我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

广群和范畴论

快捷方式: 差异相似杰卡德相似系数参考

广群和范畴论之间的区别

广群 vs. 范畴论

在数学中,尤其在范畴论和同伦论中,广群(groupoid,或勃兰特广群,Brandt groupoid)是对群的概念的抽象化。广群可被视为:. 疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

之间广群和范畴论相似

广群和范畴论有(在联盟百科)8共同点: 二元运算等价关系範疇 (數學)群作用流形数学态射

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

二元运算和广群 · 二元运算和范畴论 · 查看更多 »

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

广群和等价关系 · 等价关系和范畴论 · 查看更多 »

範疇 (數學)

在範疇論中,範疇此一概念代表著一堆數學實體和存在於這些實體間的關係。對範疇的研究允許其公式化抽象結構及保有結構的數學運算等概念。實際上,範疇在現代數學的每個分支之中都會出現,而且是統合這些領域的核心概念。有關範疇自身的研究被稱做是範疇論。.

广群和範疇 (數學) · 範疇 (數學)和范畴论 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

广群和群 · 群和范畴论 · 查看更多 »

群作用

数学上,对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射(或者对称作用)作用在某个集合上。在这个情况下,群称为置换群(特别是在群有限或者不是线性空间时)或者变换群(特别是当这个集合是线性空间而群作为线性变换作用在集合上时)。一个群G的置换表示是群作为一个集合的置换群的群表示(通常该集合有限),并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。.

广群和群作用 · 群作用和范畴论 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

广群和流形 · 流形和范畴论 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

广群和数学 · 数学和范畴论 · 查看更多 »

态射

数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.

广群和态射 · 态射和范畴论 · 查看更多 »

上面的列表回答下列问题

广群和范畴论之间的比较

广群有15个关系,而范畴论有72个。由于它们的共同之处8,杰卡德指数为9.20% = 8 / (15 + 72)。

参考

本文介绍广群和范畴论之间的关系。要访问该信息提取每篇文章,请访问: