幾何變換和行列式
快捷方式: 差异,相似,杰卡德相似系数,参考。
幾何變換和行列式之间的区别
幾何變換 vs. 行列式
幾何變換(geometric transformation)是指從具有幾何結構之集合至其自身或其他此類集合的一種對射。具體來說,「幾何變換是一個函數,其定義域與值域為點集合。幾何變換最常見的定義域與值域為同時為R2,或同時為R3。其他的幾何變換則要求須為一對一函數,使之有反函數。」可透過研究這些變換的方法來研究幾何。 幾何變換可以其操作集合的維度來分類(因此可分類出平面變換與空間變換等)。幾何變換亦可依據其保留其性質來分類:. 行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
之间幾何變換和行列式相似
幾何變換和行列式有(在联盟百科)2共同点: 双射,微分同胚。
數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).
双射和幾何變換 · 双射和行列式 · 查看更多 »
在數學中,微分同胚是適用於微分流形範疇的同構概念。這是從微分流形之間的可逆映射,使得此映射及其逆映射均為光滑(即無窮可微)的。.
幾何變換和微分同胚 · 微分同胚和行列式 · 查看更多 »
上面的列表回答下列问题
- 什么幾何變換和行列式的共同点。
- 什么是幾何變換和行列式之间的相似性
幾何變換和行列式之间的比较
幾何變換有17个关系,而行列式有134个。由于它们的共同之处2,杰卡德指数为1.32% = 2 / (17 + 134)。
参考
本文介绍幾何變換和行列式之间的关系。要访问该信息提取每篇文章,请访问: