之间平展上同调和群相似
平展上同调和群有(在联盟百科)6共同点: 基本群,代数几何,伽罗瓦群,共轭,阿贝尔群,数学。
基本群
在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.
代数几何
代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.
代数几何和平展上同调 · 代数几何和群 ·
伽罗瓦群
伽罗瓦群(Groupe de Galois)是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。 用置换群更初等地讨论伽罗瓦群,参见伽罗瓦理论一文。.
伽罗瓦群和平展上同调 · 伽罗瓦群和群 ·
共轭
共轭(conjugate)可以指:.
阿贝尔群
阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.
平展上同调和阿贝尔群 · 群和阿贝尔群 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么平展上同调和群的共同点。
- 什么是平展上同调和群之间的相似性
平展上同调和群之间的比较
平展上同调有26个关系,而群有222个。由于它们的共同之处6,杰卡德指数为2.42% = 6 / (26 + 222)。
参考
本文介绍平展上同调和群之间的关系。要访问该信息提取每篇文章,请访问: