我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

幂级数和组合数学

快捷方式: 差异相似杰卡德相似系数参考

幂级数和组合数学之间的区别

幂级数 vs. 组合数学

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。. 广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.

之间幂级数和组合数学相似

幂级数和组合数学有(在联盟百科)0共同点。

上面的列表回答下列问题

幂级数和组合数学之间的比较

幂级数有44个关系,而组合数学有24个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (44 + 24)。

参考

本文介绍幂级数和组合数学之间的关系。要访问该信息提取每篇文章,请访问: