我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

希格斯玻色子和泡利不相容原理

快捷方式: 差异相似杰卡德相似系数参考

希格斯玻色子和泡利不相容原理之间的区别

希格斯玻色子 vs. 泡利不相容原理

希格斯玻色子(Higgs boson)是標準模型裏的一種基本粒子,是一種玻色子,自旋為零,宇稱為正值,不帶電荷、色荷,極不穩定,生成後會立刻衰變。希格斯玻色子是希格斯場的量子激發。根據希格斯機制,基本粒子因與希格斯場耦合而獲得質量。假若希格斯玻色子被證實存在,則希格斯場應該也存在,而希格斯機制也可被確認為基本無誤。 物理學者用了四十多年時間尋找希格斯玻色子的蹤跡。大型強子對撞機(LHC)是全世界至今為止最昂貴、最複雜的實驗設施之一,其建成的一個主要任務就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子暫時被確認是希格斯玻色子,具有零自旋與偶宇稱,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍在等待處理與分析。 希格斯玻色子是因物理學者彼得·希格斯而命名。術語「玻色子」是為了紀念印度物理學者薩特延德拉·玻色而命名。玻色子的自旋为整数,其物理行為可以用玻色-愛因斯坦統計描述,不遵守泡利不相容原理,即處於單獨一個量子態上的粒子數目不受限制。他是於1964年提出希格斯機制的六位物理學者中的一位。2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。. 在量子力学裏,泡利不--容原理(Pauli exclusion principle)表明,兩個全同的費米子不能處於相同的量子態。這原理是由沃尔夫冈·泡利於1925年通过分析实验結果得到的結論。例如,由於電子是費米子,在一個原子裏,每個電子都擁有獨特的一組量子數n,\ell,m_\ell,m_s,兩個電子各自擁有的一組量子數不能完全相同,假若它們的主量子數n,角量子數\ell,磁量子數m_\ell分別相同,則自旋磁量子數m_s必定不同,它們必定擁有相反的自旋磁量子數。換句話說,處於同一原子軌域的兩個電子必定擁有相反的自旋方向。泡利不--容原理簡稱為泡利原理或不相容原理。 全同粒子是不可区分的粒子,按照自旋分為費米子、玻色子兩種。費米子的自旋為半整數,它的波函數對於粒子交換具有反對稱性,因此它遵守泡利不相容原理,必须用費米–狄拉克統計來描述它的統計行為。費米子包括像夸克、電子、中微子等等基本粒子。 玻色子的自旋為整數,它的波函數對於粒子交換具有對稱性,因此它不遵守泡利不相容原理,它的統計行為只符合玻色-愛因斯坦統計。任意數量的全同玻色子都可以處於同樣量子態。例如,激光產生的光子、玻色-愛因斯坦凝聚等等。 泡利不相容原理是原子物理學與分子物理學的基礎理論,它促成了化學的變幻多端、奧妙無窮。2013年,義大利的格蘭沙索國家實驗室(Laboratori Nazionali del Gran Sasso)團隊發佈實驗結果,違反泡利不相容原理的概率上限被設定為4.7×10-29。.

之间希格斯玻色子和泡利不相容原理相似

希格斯玻色子和泡利不相容原理有(在联盟百科)20共同点: 基本粒子夸克上夸克中子玻色子电子質子费米子超导现象薩特延德拉·納特·玻色膠子重子量子场论量子態自旋色荷電磁力W及Z玻色子标准模型数量级

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

基本粒子和希格斯玻色子 · 基本粒子和泡利不相容原理 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

夸克和希格斯玻色子 · 夸克和泡利不相容原理 · 查看更多 »

上夸克

在所有種類的夸克中,上夸克(Up quark)的質量最小,裸質量約為1.8–。上夸克是第一代夸克, 是自旋為的費米子。帶有電荷+ e。根據粒子物理學的標準模型理論,上夸克與下夸克是構成核子的基本粒子,質子擁有兩個上夸克和一個下夸克,而中子則有一個上夸克和兩個下夸克。上夸克參與所有四種基本相互作用:引力相互作用、電磁相互作用、弱相互作用與強相互作用。上夸克的反粒子為反上夸克。 1964年,默里·蓋爾曼 及喬治·茨威格首先提出上夸克的存在,目的是在解釋強子的八重道分類系統。1967年,透過在史丹佛直線加速器進行的,首度證實了上夸克存在。.

上夸克和希格斯玻色子 · 上夸克和泡利不相容原理 · 查看更多 »

中子

| magnetic_moment.

中子和希格斯玻色子 · 中子和泡利不相容原理 · 查看更多 »

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

希格斯玻色子和玻色子 · 泡利不相容原理和玻色子 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

希格斯玻色子和电子 · 泡利不相容原理和电子 · 查看更多 »

質子

|magnetic_moment.

希格斯玻色子和質子 · 泡利不相容原理和質子 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

希格斯玻色子和费米子 · 泡利不相容原理和费米子 · 查看更多 »

超导现象

超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度(Tc)。超导现象的特征是零电阻和完全抗磁性。.

希格斯玻色子和超导现象 · 泡利不相容原理和超导现象 · 查看更多 »

薩特延德拉·納特·玻色

薩特延德拉·納特·玻色(Satyendra Nath Bose,孟加拉語:সত্যেন্দ্র নাথ বসু,),印度物理學家,專門研究數學物理。他最著名的研究是1920年代早期的量子物理研究,該研究為玻色-愛因斯坦統計及玻色-愛因斯坦凝聚理論提供了基礎。玻色子就是以他的名字命名的。 儘管玻色子、玻色-愛因斯坦統計及玻色-愛因斯坦凝聚概念的相關研究所獲得的諾貝爾獎不止一個──最近的是2001年的物理學獎,因對玻色-愛因斯坦凝聚的理論進展有貢獻而獲獎的──但玻色本人從未獲得過諾貝爾物理學獎。他多才多藝,能說多國語言之餘,還會彈(Esraj,一種跟小提琴相近的樂器)。 著名物理學家(Jayant Narlikar)在他的《科學邊緣》一書中寫道:“S·N·玻色的粒子物理研究(約1922年),其中闡明了光子的表現,並為統計遵從量子規則的微系統提供了機會,是二十世紀印度科學貢獻的前十名之一,是可被視為諾貝爾獎級數的研究。”.

希格斯玻色子和薩特延德拉·納特·玻色 · 泡利不相容原理和薩特延德拉·納特·玻色 · 查看更多 »

膠子

没有描述。

希格斯玻色子和膠子 · 泡利不相容原理和膠子 · 查看更多 »

重子

重子(Baryon)是一個現代粒子物理學名詞,在標準模型理論中,「重子」這一名詞是指由三个夸克(或者三个反夸克组成的「反重子」)组成的複合粒子。在這理論中它是強子的一類。值得注意的是,因為重子屬於複合粒子,所以「不是」基本粒子。最常见的重子有組成日常物質原子核的质子和中子,合称为核子。其它重子中,有比这两種粒子更重的粒子,所谓的超子。重子这个称呼是指其质量相对重于轻子和介于两者之间的介子起的。 重子是强相互作用的费米子,也就是说它们遵守费米-狄拉克统计和泡利不相容原理,它们通过组成它们的夸克参加强相互作用。同时它们也参加弱相互作用和引力。带电荷的重子也参加电磁力作用。 重子与由一个夸克和一个反夸克组成的介子一起被合称为强子。强子是所有强相互作用的粒子的总称。 质子是唯一独立稳定的重子。中子假如不与其它中子或者质子一起组成原子核的话就不會稳定,並產生衰变。.

希格斯玻色子和重子 · 泡利不相容原理和重子 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

希格斯玻色子和量子场论 · 泡利不相容原理和量子场论 · 查看更多 »

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

希格斯玻色子和量子態 · 泡利不相容原理和量子態 · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

希格斯玻色子和自旋 · 泡利不相容原理和自旋 · 查看更多 »

色荷

粒子物理學中,色荷(color charge)是夸克與膠子的一種性質,在量子色動力學(QCD)的架構底下,與它們之間的強交互作用有關。色荷與粒子的電荷呈類比關係,但因為QCD的數學複雜性,色荷與電荷有許多技術上的不同。夸克與膠子的「顏色」與視覺上的色彩無關,而僅僅是對於一種表現上幾乎不超過原子核大小範圍的性質的一項奇特名稱。「顏色」這個詞單純是因為色荷有三種類形,類比於三原色;相對地,電荷就只有一種類型(但其中尚有正負之分)。 1964年,夸克的存在被提出之後不久,奧斯卡·格林柏格(Oscar Greenberg)引入了色荷的概念,試圖解釋幾個夸克如何能夠共同組成強子,處於在其它方面完全相同的狀態但卻仍滿足泡利不相容原理。這概念後來證實有用並且成為夸克模型的一部分。此後從1970年代,QCD開始發展,並構成粒子物理學中標準模型的重要成份。.

希格斯玻色子和色荷 · 泡利不相容原理和色荷 · 查看更多 »

電磁力

電磁力(electromagnetic force)是處於電場、磁場或電磁場的帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力、弱作用力、引力。光子是傳遞電磁力的媒介。在電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷是基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。 對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。.

希格斯玻色子和電磁力 · 泡利不相容原理和電磁力 · 查看更多 »

W及Z玻色子

在物理學中,W及Z玻色子(boson)是負責傳遞弱核力的基本粒子。它們是1983年在歐洲核子研究組織發現的,被認為是粒子物理標準模型的一大勝利。 W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。.

W及Z玻色子和希格斯玻色子 · W及Z玻色子和泡利不相容原理 · 查看更多 »

标准模型

在粒子物理學裏,標準模型(Standard Model,SM)是描述強力、弱力及電磁力這三種基本力及組成所有物質基本粒子的理論,屬於量子場論的範疇,並與量子力學及狭义相對論相容。到目前為止,幾乎所有對以上三種力的實驗的結果都合乎這套理論的預測。但是標準模型還不是萬有理論,主要是因為還沒有描述引力。.

希格斯玻色子和标准模型 · 标准模型和泡利不相容原理 · 查看更多 »

数量级

數量級是指數量的尺度或大小的级别,每个级别之间保持固定的比例。通常采用的比例有 10,2,1000,1024, ''e'' (欧拉数,大约等于 2.71828182846 的超越數,即自然對數的底)。 通常情况下,数量级指一系列 10 的冪(次方),即相邻两个数量级之间的比为 10。例如说两数相差三个数量级,其实就是说一个数比另一个大 1000 倍。本文主要描述十进制下的数量级,并采用科学记数法表示。.

希格斯玻色子和数量级 · 数量级和泡利不相容原理 · 查看更多 »

上面的列表回答下列问题

希格斯玻色子和泡利不相容原理之间的比较

希格斯玻色子有137个关系,而泡利不相容原理有108个。由于它们的共同之处20,杰卡德指数为8.16% = 20 / (137 + 108)。

参考

本文介绍希格斯玻色子和泡利不相容原理之间的关系。要访问该信息提取每篇文章,请访问: