徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

希格斯机制和质量

快捷方式: 差异相似杰卡德相似系数参考

希格斯机制和质量之间的区别

希格斯机制 vs. 质量

在標準模型裏,希格斯機制(Higgs mechanism)是一種生成質量的機制,能夠使基本粒子獲得質量。為什麼費米子、W玻色子、Z玻色子具有質量,而光子、膠子的質量為零?希格斯機制可以解釋這問題。希格斯機制應用自發對稱性破缺來賦予規範玻色子質量。在所有可以賦予規範玻色子質量,而同時又遵守規範理論的可能機制中,這是最簡單的機制。根據希格斯機制,希格斯場遍佈於宇宙,有些基本粒子因為與希格斯場之間交互作用而獲得質量。 更仔細地解釋,在规范场论裏,為了滿足定域規範不變性,必須設定规范玻色子的质量為零。由於希格斯場的真空期望值不等於零,希格斯場在最低能量態的平均值,就是「希格斯場的真空期望值」。費曼微積分(Feymann calculus)用來計算的是希格斯場在最低能量態的振動,即希格斯玻色子。造成自發對稱性破缺,因此規範玻色子會獲得質量,同時生成一種零質量玻色子,稱為戈德斯通玻色子,而希格斯玻色子則是伴隨著希格斯場的粒子,是希格斯場的振動。通過選擇適當的規範,戈德斯通玻色子會被抵銷,只存留帶質量希格斯玻色子與帶質量規範向量場。 費米子也是因為與希格斯場相互作用而獲得質量,但它們獲得質量的方式不同於W玻色子、Z玻色子的方式。在规范场论裏,為了滿足定域規範不變性,必須設定費米子的质量為零。通過湯川耦合,費米子也可以因為自發對稱性破缺而獲得質量。 本條目的數學表述內容需要讀者了解一些量子場論的知識。所有方程式都遵守愛因斯坦求合約定。按照粒子物理學慣例,採用CGS單位制為物理量的單位,並且設定光速與約化普朗克常數的數值為1。. 在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

之间希格斯机制和质量相似

希格斯机制和质量有(在联盟百科)2共同点: 光速真空

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

光速和希格斯机制 · 光速和质量 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

希格斯机制和真空 · 真空和质量 · 查看更多 »

上面的列表回答下列问题

希格斯机制和质量之间的比较

希格斯机制有71个关系,而质量有138个。由于它们的共同之处2,杰卡德指数为0.96% = 2 / (71 + 138)。

参考

本文介绍希格斯机制和质量之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »