我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

希尔伯特空间和柯爾莫果洛夫空間

快捷方式: 差异相似杰卡德相似系数参考

希尔伯特空间和柯爾莫果洛夫空間之间的区别

希尔伯特空间 vs. 柯爾莫果洛夫空間

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。. 在拓扑学和相关的数学分支中,T0空間,又稱柯爾莫哥洛夫空間,以數學家安德雷·柯爾莫哥洛夫命名,形成了一类广泛的表现良好的拓扑空间。T0 条件是分离公理之一。.

之间希尔伯特空间和柯爾莫果洛夫空間相似

希尔伯特空间和柯爾莫果洛夫空間有(在联盟百科)6共同点: 可测函数完备空间量子力学Lp空间有限集合数学

可测函数

可测函数是可测空间之间的保持(可測集合)結構的函数,也是勒貝格積分或實分析中主要討論的函數。数学分析中的不可测函数一般视为病态的。 如果Σ是集合X上的σ代数,Τ是Y上的σ代数,则函数f: X → Y是Σ/Τ可测的,如果Τ内的所有集合的原像都在Σ内。 根据惯例,如果Y是某个拓扑空间,例如实数空间\mathbb,或复数空间\mathbb,则我们通常使用Y上的开集所生成的波莱尔σ代数,除非另外说明。在这种情况下,可测空间(X,&Sigma)又称为波莱尔空间。 如果从上下文很清楚Τ和Σ是什么,则函数f可以称为Σ可测的,或干脆称为可测的。.

可测函数和希尔伯特空间 · 可测函数和柯爾莫果洛夫空間 · 查看更多 »

完备空间

完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.

完备空间和希尔伯特空间 · 完备空间和柯爾莫果洛夫空間 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

希尔伯特空间和量子力学 · 柯爾莫果洛夫空間和量子力学 · 查看更多 »

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

Lp空间和希尔伯特空间 · Lp空间和柯爾莫果洛夫空間 · 查看更多 »

有限集合

数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.

希尔伯特空间和有限集合 · 有限集合和柯爾莫果洛夫空間 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

希尔伯特空间和数学 · 数学和柯爾莫果洛夫空間 · 查看更多 »

上面的列表回答下列问题

希尔伯特空间和柯爾莫果洛夫空間之间的比较

希尔伯特空间有79个关系,而柯爾莫果洛夫空間有44个。由于它们的共同之处6,杰卡德指数为4.88% = 6 / (79 + 44)。

参考

本文介绍希尔伯特空间和柯爾莫果洛夫空間之间的关系。要访问该信息提取每篇文章,请访问: