徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

布莱恩·葛林和粒子物理學

快捷方式: 差异相似杰卡德相似系数参考

布莱恩·葛林和粒子物理學之间的区别

布莱恩·葛林 vs. 粒子物理學

布莱恩·葛林(Brian Greene, )是美国著名的理论物理学家与超弦理论家。他自1996年以来担任了哥伦比亚大学(弦论、宇宙学和天体粒子研究中心 ISCAP)的教授。1999年他发表了他的第一本科普书《》,激发了他在普通大众中的知名度。之后他又撰写了《宇宙的构造》,《隐遁的事实》等书,还出演了在他书的基础上制作的PBS同名科学纪录片。葛林出演了著名美国喜剧《生活大爆炸》(第四季)第20集,《The Herb Garden Germination》。. 粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

之间布莱恩·葛林和粒子物理學相似

布莱恩·葛林和粒子物理學有(在联盟百科)14共同点: 基本粒子夸克中微子万有理论弦理論光子粒子美国电子物理学物质超对称量子力学自然

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

基本粒子和布莱恩·葛林 · 基本粒子和粒子物理學 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

夸克和布莱恩·葛林 · 夸克和粒子物理學 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

中微子和布莱恩·葛林 · 中微子和粒子物理學 · 查看更多 »

万有理论

萬有理論(Theory of Everything或ToE)指的是假定存在的一種具有總括性、一致性的物理理論框架,能夠解釋宇宙的所有物理奧秘。經過幾個世紀奮勉不懈的努力,發展出兩種理論框架:廣義相對論與量子場論。它們的總合,可以說是最接近想像中的萬有理論。廣義相對論專注於研究引力來明白宇宙的大尺度與高質量現象,例如恆星、星系、星系團等等。量子場論專注於研究非引力來明白宇宙的小尺度與低質量現象,例如,亞原子粒子、原子、分子等等。量子場論成功地給出標準模型,並且能夠按照大統一理論將弱力、強力與電磁力這三種非引力統合在一起。 經過多年的研究,這兩種理論分別在適用範圍內做出的預測幾乎都已被實驗肯定。根据物理学家的研究结果,廣義相對論與量子場論互不相容,即對於某些狀況,两者不可能同时是正確的。由於這兩種理論的適用範圍不同,對於大多數狀況,只需用到其中一種理論。這兩種理論的不相容之處在非常小尺度與高質量範圍才成为显著的问题,例如,在黑洞內部、在宇宙大爆炸之后的极短时间。為了解釋這衝突,透露更深層實在、將引力與其它三種作用力統合在一起的理論框架必需被找出,和諧地将廣義相對論與量子場論整合在一起,原則而言,成為能夠描述所有物理現象的單一理論。近期,在追逐這艱難目標的過程中,量子引力已成為積極研究領域。 万有理论用来指那些试图统合自然界四种基本相互作用:引力相互作用、强相互作用、弱相互作用和电磁相互作用成為一体的理论,是在电磁作用和弱相互作用連成一体的电弱作用理论之後,再加入強相互作用連成一体的大統一理論基础之後,又加上引力作用連成一体的理論。目前被认为最有可能成功的萬有理论是弦理论和圈量子引力論。.

万有理论和布莱恩·葛林 · 万有理论和粒子物理學 · 查看更多 »

弦理論

弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.

布莱恩·葛林和弦理論 · 弦理論和粒子物理學 · 查看更多 »

光子

| mean_lifetime.

光子和布莱恩·葛林 · 光子和粒子物理學 · 查看更多 »

粒子

物理科學中,粒子為佔有微小局域的物体,能夠以數個物理性质或化学性质,如体积或质量加以描述。.

布莱恩·葛林和粒子 · 粒子和粒子物理學 · 查看更多 »

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

布莱恩·葛林和美国 · 粒子物理學和美国 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

布莱恩·葛林和电子 · 电子和粒子物理學 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

布莱恩·葛林和物理学 · 物理学和粒子物理學 · 查看更多 »

物质

物质是一個科學上沒有明確定義的詞,一般是指靜止質量不為零的東西。物质也常用來泛稱所有組成可觀測物體的成份 。 所有可以用肉眼看到的物體都是由原子組成,而原子是由互相作用的次原子粒子所組成,其中包括由質子和中子組成的原子核,以及許多電子組成的電子雲 。 一般而言科學上會將上述的複合粒子視為物質,因為他們具有靜止質量及體積。相對的,像光子等无质量粒子一般不視為物質。不過不是所有具有靜止質量的粒子都有古典定義下的體積,像夸克及輕子等粒子一般會視為質點,不具有大小及體積。而夸克和輕子之間的交互作用才使得質子和中子有所謂的體積,也使得一般物體有體積。 物質常見的物質狀態有四種:固體、液體、氣體及等离子体。不過實驗技術的進步產生了許多新的物質狀態,像是玻色–爱因斯坦凝聚及费米子凝聚态。對於基本粒子的研究也產生了新的物質狀態,像是夸克-膠子漿 。在自然科學的歷史中,許多人都在研究物質的確切性質,物質是由許多離散組件組合而成的概念,即所謂的「物質粒子論」,最早是由古希臘哲學家留基伯及德谟克利特提出。 愛因斯坦證明所有物體都可以轉換為能量(即質能等價),之間的關係式即為著名的E.

布莱恩·葛林和物质 · 物质和粒子物理學 · 查看更多 »

超对称

超对称是费米子和玻色子之间的一种對稱性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。大型強子對撞機將會驗證粒子是否有相對應的超對稱粒子這個疑問。 超對稱模型能解決三個難題:.

布莱恩·葛林和超对称 · 粒子物理學和超对称 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

布莱恩·葛林和量子力学 · 粒子物理學和量子力学 · 查看更多 »

自然

自然(英文:Nature),是指不断运行演化的宇宙萬物,包括生物界和非生物界两个相辅相成的体系。 人类所能理解地自然现象有:生物界的基因模因、共识主动、意识行为、社会活动和生态系统等;宇宙间的天使粒子、次原子粒子、星系星云和黑洞白洞等。 人类不能理解地宗教信仰、灵魂观念和神明信念等现象,被称为超自然现象。 从对超自然现象的探索,到对自然现象的认知,是人类逐渐理解自己、适应生存环境和丰富社会活动的过程。例如,古时,火是神明,日月星辰是超自然现象;如今,卫星、电视、电脑和手机成为了神话中的千里眼和顺风耳;区块链成了全球共识共享的无字天书。.

布莱恩·葛林和自然 · 粒子物理學和自然 · 查看更多 »

上面的列表回答下列问题

布莱恩·葛林和粒子物理學之间的比较

布莱恩·葛林有66个关系,而粒子物理學有99个。由于它们的共同之处14,杰卡德指数为8.48% = 14 / (66 + 99)。

参考

本文介绍布莱恩·葛林和粒子物理學之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »