我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

布洛赫波和晶体学

快捷方式: 差异相似杰卡德相似系数参考

布洛赫波和晶体学之间的区别

布洛赫波 vs. 晶体学

在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。 布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫而得名。 布洛赫波由一个平面波和一个周期函数 u(\boldsymbol) (布洛赫波包)相乘得到。其中 u(\boldsymbol) 与势场具有相同周期性。布洛赫波的具体形式为: 式中k 为波向量。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质: 这一结论称为布洛赫定理(Bloch's theorem),其中 \boldsymbol 为晶格周期向量。可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。 平面波波向量 \boldsymbol (又称“布洛赫波向量”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵向量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波向量,即所谓“简约波向量”。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n 以区别。这些能带的能量在 \boldsymbol 的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。 上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波向量 \boldsymbol 是一个守恒量(以倒易点阵向量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷以及电子与声子的相互作用。 从薛定谔方程出发可以证明,哈密顿算符与平移算符的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。 布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(1877年),(1883年)和亚历山大·李雅普诺夫(1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程。. 晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

之间布洛赫波和晶体学相似

布洛赫波和晶体学有(在联盟百科)4共同点: 群论电子散射晶体

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

布洛赫波和群论 · 晶体学和群论 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

布洛赫波和电子 · 晶体学和电子 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

布洛赫波和散射 · 散射和晶体学 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

布洛赫波和晶体 · 晶体和晶体学 · 查看更多 »

上面的列表回答下列问题

布洛赫波和晶体学之间的比较

布洛赫波有34个关系,而晶体学有77个。由于它们的共同之处4,杰卡德指数为3.60% = 4 / (34 + 77)。

参考

本文介绍布洛赫波和晶体学之间的关系。要访问该信息提取每篇文章,请访问: