我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

布拉利-福尔蒂悖论和集合论

快捷方式: 差异相似杰卡德相似系数参考

布拉利-福尔蒂悖论和集合论之间的区别

布拉利-福尔蒂悖论 vs. 集合论

在集合論此一數學領域裡,布拉利-福爾蒂悖論斷言,樸素建構「所有序數的集合」會導致矛盾,因此每個允許此一構造的系統都會顯得自相矛盾。此一悖論是以切薩雷·布拉利-福爾蒂來命名的,他在1897年發現了此一悖論。. 集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

之间布拉利-福尔蒂悖论和集合论相似

布拉利-福尔蒂悖论和集合论有(在联盟百科)9共同点: 序数二律背反分类公理公理化集合论策梅洛-弗兰克尔集合论罗素悖论集合论新基础集合论数学

序数

數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.

布拉利-福尔蒂悖论和序数 · 序数和集合论 · 查看更多 »

二律背反

二律背反是康德的哲学概念。意指对同一个对象或问题所形成的两种理论或学说虽然各自成立但却相互矛盾的现象,又译作二律背驰,相互冲突或自相矛盾。 二律背反是康德在其代表作《纯粹理性批判》中提出的。在書中,康德列出四種二律背反,均由正題和反題组成。 康德先设置了理性作为感性与知性的综合。知性所依赖的范畴是先验的,由量、质、关系、样式等十二个范畴组成。当理性试图使用这些范畴去规范先验的无限物时,就会出现范畴失效的情况,也就是二律背反。 四组二律背反被康德分为两类,四项正命题被称为柏拉图线。四项反命题被称为伊壁鸠鲁线。康德认为柏拉图线是实践性的,因为这一线允许宗教、道德从中获益。伊壁鸠鲁线是思辨的,因为他引发探究,促使科技发展。.

二律背反和布拉利-福尔蒂悖论 · 二律背反和集合论 · 查看更多 »

分类公理

在公理化集合论和使用它的逻辑、数学和计算机科学分支中,分类公理模式、或分离公理模式、或受限概括公理模式是 Zermelo-Fraenkel 集合论中的一个公理模式。它也叫做概括公理模式,尽管这个术语也用于下面讨论的无限制概括。 假定 P 是不含符号 B 的一个單变量谓词。在 Zermelo-Fraenkel 公理的形式语言中,这个公理模式读做: 换句话说: 要理解这个公理模式,注意集合 B 必须是 A 的子集。所以,这个公理模式实际上说的是,给定集合 A 和谓词 P,我们可以找到 A 的子集 B,它的成员正是那些满足 P 的 A 的成员。通过外延公理可知这个集合是唯一的。我们通常使用集合建構式符号把它指示为 。所以这个公理的本质是: 分类公理模式是与 ZFC 集合论有关的公理集合論系統的特征,但在根本上不同的可替代的集合论系统中通常不出现。例如,新基礎集合論和正集合论使用对朴素集合论的概括公理的不同的限制。Vopenka 的可替代的集合论有一个特殊要点,它允许集合的真子类的存在,這樣的真類叫做半集合。即使在与 ZFC 有关的系统中,这个公理模式有时也限制于带有的公式,比如在中。.

分类公理和布拉利-福尔蒂悖论 · 分类公理和集合论 · 查看更多 »

公理化集合论

在數學中,公理化集合论是集合論透過建立一階邏輯的嚴謹重整,以解決樸素集合論中出現的悖論。集合論的基礎主要由德國數學家格奧爾格·康托爾在19世紀末建立。.

公理化集合论和布拉利-福尔蒂悖论 · 公理化集合论和集合论 · 查看更多 »

策梅洛-弗兰克尔集合论

梅洛-弗兰克尔集合论(Zermelo-Fraenkel Set Theory),含选择公理時常简写为ZFC,是在数学基础中最常用形式的公理化集合论,不含選擇公理的則簡寫為ZF。.

布拉利-福尔蒂悖论和策梅洛-弗兰克尔集合论 · 策梅洛-弗兰克尔集合论和集合论 · 查看更多 »

罗素悖论

罗素悖论(Russell's paradox),也称为理发师悖论,是英國哲學家罗素於1901年提出的悖论,一个关于类的内涵问题。罗素悖论当时的提出,造成了第三次数学危机。.

布拉利-福尔蒂悖论和罗素悖论 · 罗素悖论和集合论 · 查看更多 »

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

布拉利-福尔蒂悖论和集合论 · 集合论和集合论 · 查看更多 »

新基础集合论

在数理逻辑中,新基础集合論(NF)是公理化集合論的一種,由蒯因构想出來作为对《数学原理》中类型论的简化。蒯因1937年於《数理逻辑的新基础》一文中首次提及NF(此即其名稱的由來)。請注意,此条目大多是在談论NFU,這是Jensen於1969年所提出,並由Holmes於1998年闡述的一重要变体。.

布拉利-福尔蒂悖论和新基础集合论 · 新基础集合论和集合论 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

布拉利-福尔蒂悖论和数学 · 数学和集合论 · 查看更多 »

上面的列表回答下列问题

布拉利-福尔蒂悖论和集合论之间的比较

布拉利-福尔蒂悖论有13个关系,而集合论有97个。由于它们的共同之处9,杰卡德指数为8.18% = 9 / (13 + 97)。

参考

本文介绍布拉利-福尔蒂悖论和集合论之间的关系。要访问该信息提取每篇文章,请访问: