我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

巴巴拉·麦克林托克和细胞遗传学

快捷方式: 差异相似杰卡德相似系数参考

巴巴拉·麦克林托克和细胞遗传学之间的区别

巴巴拉·麦克林托克 vs. 细胞遗传学

芭芭拉·麦克林托克(Barbara McClintock,),美國著名女性細胞遺傳學家。1983年獲得诺贝尔生理學或醫學奖,是首位單獨獲得該獎項的女科學家。. 细胞遗传学(Cytogenetics)是遗传学下的一个分支,主要研究的是染色体与细胞表现之间的关系(尤其是在有絲分裂和减数分裂期间)。与之相关的技术包括核型、G显带染色体分析、其他遗传显带技术,以及诸如熒光原位雜交(FISH)和 (CGH)等分子遗传学技术。.

之间巴巴拉·麦克林托克和细胞遗传学相似

巴巴拉·麦克林托克和细胞遗传学有(在联盟百科)6共同点: 基因基因座减数分裂遗传学表型染色体

基因

基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

基因和巴巴拉·麦克林托克 · 基因和细胞遗传学 · 查看更多 »

基因座

在生物學與演化運算(evolutionary computation)中,基因座(locus),也称为“基因位点”或“位点”,是指染色體上的固定位置,例如某個基因的所在。而基因座上的DNA序列可能有許多不同的變化,各種變化形式稱為等位基因(allele)。基因座在基因組中的排列位置稱為基因图谱(genetic map),基因作圖(Gene mapping)則是測定基因座與特定性狀關係的過程。 二倍體與多倍體細胞的某些染色體上,在同一基因座上有相同的等位基因,這類細胞稱為纯合子/同型合子(homozygous)。若是相同基因座上含有不同的等位基因,則稱作杂合子/異型合子(heterozygous)。.

基因座和巴巴拉·麦克林托克 · 基因座和细胞遗传学 · 查看更多 »

减数分裂

減數分裂(meiosis)是一種特殊的細胞分裂方式,會使得染色體的數目減半,製造出單倍體細胞,每條染色體源自於其親代細胞 。這個過程會發生在所有以有性生殖進行繁殖的單細胞或多細胞真核生物體內,包括動物、植物、以及真菌Bernstein H, Bernstein C, Michod RE (2011).

减数分裂和巴巴拉·麦克林托克 · 减数分裂和细胞遗传学 · 查看更多 »

遗传学

遗传学是研究生物体的遗传和变异的科学,是生物学的一个重要分支Hartl D, Jones E (2005)。史前时期,人们就已经利用生物体的遗传特性通过选择育种来提高谷物和牲畜的产量。而现代遗传学,其目的是寻求了解遗传的整个过程的机制,则是开始于19世纪中期孟德尔的研究工作。虽然孟德尔并不知道遗传的物理基础,但他观察到了生物体的遗传特性,某些遗传单位遵守简单的统计学规律,这些遗传单位现在被称为基因。 基因位于DNA上,而DNA是由四类不同的核苷酸组成的链状分子,DNA上的核苷酸序列就是生物体的遗传信息。天然DNA以双链形式存在,两条链上的核苷酸互补,而每一条链都能够作为模板来合成新的互补链。这就是生成可以被遗传的基因的复制方式。 基因上的核苷酸序列可以被细胞翻译以合成蛋白质,蛋白质上的氨基酸序列就对应着基因上的核苷酸序列。这种对应性被称为遗传密码。蛋白质的氨基酸序列决定了它如何折叠成为一个三维结构,而蛋白质结构则与它所发挥的功能密不可分。蛋白质执行细胞中几乎所有的生物学进程来维持细胞的生存。DNA上的一个基因的改变可以改变其编码的蛋白质的氨基酸,并可能改变此蛋白质的结构和功能,进而对细胞甚至整个生物体造成巨大的影响。 虽然遗传学在决定生物体外形和行为的过程中扮演着重要的角色,但此过程是遗传学和生物体所经历的环境共同作用的结果。 例如,虽然基因能够在一定程度上决定一个人的体重,人在孩童时期的所经历的营养和健康状况也对他的体重有重大影响。.

巴巴拉·麦克林托克和遗传学 · 细胞遗传学和遗传学 · 查看更多 »

表型

表型(Phenotype),又称表現型,对于一個生物而言,表示它某一特定的物理外觀或成分。一個人是否有耳珠、植物的高度、人的血型、蛾的顏色等等,都是表型的例子。 表型主要受生物的基因型和環境影響,表型可分為連續變異或不連續變異的。前者較易受環境因素影響,基因型上則會受多個等位基因影響,如體重、智力和身高;後者僅受幾個等位基因影響,而且很少會被環境改變,如血型、眼睛顏色和捲舌的能力。對於不連續變異,若有兩個生物表現型相同,其基因型未必一樣,這是因為其中一方可能有隱性基因。 表型變異是進化論物競天擇理論成立的重要條件。早期的遺傳學家欠缺分子生物學技術,無從直接觀察DNA構造,生物和其後代的表型就是他們判別其基因型的工具。.

巴巴拉·麦克林托克和表型 · 细胞遗传学和表型 · 查看更多 »

染色体

-- 染色體(chromosome)是真核生物特有的構造,主要由雙股螺旋的脱氧核糖核酸和5种被称为组蛋白的蛋白质构成,是基因的主要載體。染色体是细胞内具有遗传性质的遗传物质深度压缩形成的聚合体,易被碱性染料染成深色,所以叫染色体(由染色质组成)。染色质和染色体是同一物质在细胞分裂间期和分裂期的不同形态表现。染色体出现于分裂期。染色质出现于间期,呈丝状。其本质都是脱氧核糖核酸(DNA)和蛋白质的组合(即核蛋白组成的),不均匀地分布于细胞核中 ,是遗传信息(基因)的主要载体,但不是唯一载体(如细胞质内的線粒体)。.

巴巴拉·麦克林托克和染色体 · 染色体和细胞遗传学 · 查看更多 »

上面的列表回答下列问题

巴巴拉·麦克林托克和细胞遗传学之间的比较

巴巴拉·麦克林托克有47个关系,而细胞遗传学有22个。由于它们的共同之处6,杰卡德指数为8.70% = 6 / (47 + 22)。

参考

本文介绍巴巴拉·麦克林托克和细胞遗传学之间的关系。要访问该信息提取每篇文章,请访问: