我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

嵌入 (数学)和数学结构

快捷方式: 差异相似杰卡德相似系数参考

嵌入 (数学)和数学结构之间的区别

嵌入 (数学) vs. 数学结构

數學上,嵌入是指一個數學結構經映射包含到另一個結構中。某個物件X稱為嵌入到另一個物件Y中,是指有一個保持結構的單射f: X→Y,這個映射f就給出了一個嵌入。上述「保持結構」的準確意思,需由所討論的結構而定。一個保持結構的映射,在範疇論中稱為態射。 要表達f: X→Y是一個嵌入,有時會使用帶鉤箭號f\colon X\hookrightarrow Y。但這個帶鉤箭號有時只留作表示包含映射時用。. 在数学中,一个集合上的结构,或者更一般的讲类型,是由附加在该集合上的数学对象所组成,它们使得这个集合更易操作或赋予它们特殊的意义。 常见的结构包括测度,代数结构,拓扑,度量结构(几何),序,和等价关系等等。 有时候,一个集合同时有几种结构;这使得可研究的属性更丰富。例如,序可以导出一种拓扑。又如,如果一个集合有个拓扑并是一个群,而且这两个结构满足一定关系,则该集合成为一个拓扑群。.

之间嵌入 (数学)和数学结构相似

嵌入 (数学)和数学结构有1共同点(的联盟百科): 数学

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

嵌入 (数学)和数学 · 数学和数学结构 · 查看更多 »

上面的列表回答下列问题

嵌入 (数学)和数学结构之间的比较

嵌入 (数学)有33个关系,而数学结构有19个。由于它们的共同之处1,杰卡德指数为1.92% = 1 / (33 + 19)。

参考

本文介绍嵌入 (数学)和数学结构之间的关系。要访问该信息提取每篇文章,请访问: