之间尼尔斯·玻尔和自旋相似
尼尔斯·玻尔和自旋有(在联盟百科)13共同点: 埃尔温·薛定谔,不确定性原理,中子,中微子,乔治·乌伦贝克,光子,维尔纳·海森堡,相对论,量子力学,量子化,沃尔夫冈·泡利,泡利不相容原理,普朗克常数。
埃尔温·薛定谔
埃尔温·魯道夫·尤則夫·亞歷山大·薛定諤(Erwin Rudolf Josef Alexander Schrödinger,),生于奥地利维也纳,是奥地利一位理论物理学家,量子力学的奠基人之一。1926年他提出薛定谔方程,为量子力学奠定了坚实的基础。他想出薛定谔猫思想實驗,试图证明量子力学在宏观条件下的不完备性。 1933年,因為“发现了在原子理论裏很有用的新形式”,薛定諤和英国物理学家保罗·狄拉克共同获得了诺贝尔物理学奖,以表彰他们发现了薛定谔方程和狄拉克方程。 他的父亲鲁道夫·薛定諤是生产油布和防水布的工厂主同时也是一名园艺家。他的母亲格鲁吉亚娜·艾米莉·布兰达是维也纳科技大学的教授亚历山大·鲍尔的女儿。.
不确定性原理
在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.
中子
| magnetic_moment.
中微子
中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.
中微子和尼尔斯·玻尔 · 中微子和自旋 ·
乔治·乌伦贝克
乔治·尤金·乌伦贝克(George Eugene Uhlenbeck,),荷兰出生的美国理论物理学家。在1925年9月中旬,他和塞缪尔·古德斯米特合作,发现了电子的自旋。.
光子
| mean_lifetime.
维尔纳·海森堡
维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.
相对论
对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.
尼尔斯·玻尔和相对论 · 相对论和自旋 ·
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
尼尔斯·玻尔和量子力学 · 自旋和量子力学 ·
量子化
在物理學裏,量子化是一種從經典場論建構出量子場論的程序。使用這程序,時常可以直接地將經典力學裏的理論量身打造成嶄新的量子力學理論。物理學家所談到的場量子化,指的就是電磁場的量子化。在這裡,他們會將光子分類為一種場量子(例如,稱呼光子為光量子)。對於粒子物理學,核子物理學,固態物理學和量子光學等等學術領域內的理論,量子化是它們的基礎程序。.
尼尔斯·玻尔和量子化 · 自旋和量子化 ·
沃尔夫冈·泡利
沃尔夫冈·欧内斯特·泡利(Wolfgang Ernst Pauli,),奥地利理论物理学家,是量子力学研究先驱者之一。1945年,在愛因斯坦的提名下,他因泡利不相容原理而获得诺贝尔物理学奖。泡利不相容原理涉及自旋理论,是理解物质结构乃至化学的基础。.
泡利不相容原理
在量子力学裏,泡利不--容原理(Pauli exclusion principle)表明,兩個全同的費米子不能處於相同的量子態。這原理是由沃尔夫冈·泡利於1925年通过分析实验結果得到的結論。例如,由於電子是費米子,在一個原子裏,每個電子都擁有獨特的一組量子數n,\ell,m_\ell,m_s,兩個電子各自擁有的一組量子數不能完全相同,假若它們的主量子數n,角量子數\ell,磁量子數m_\ell分別相同,則自旋磁量子數m_s必定不同,它們必定擁有相反的自旋磁量子數。換句話說,處於同一原子軌域的兩個電子必定擁有相反的自旋方向。泡利不--容原理簡稱為泡利原理或不相容原理。 全同粒子是不可区分的粒子,按照自旋分為費米子、玻色子兩種。費米子的自旋為半整數,它的波函數對於粒子交換具有反對稱性,因此它遵守泡利不相容原理,必须用費米–狄拉克統計來描述它的統計行為。費米子包括像夸克、電子、中微子等等基本粒子。 玻色子的自旋為整數,它的波函數對於粒子交換具有對稱性,因此它不遵守泡利不相容原理,它的統計行為只符合玻色-愛因斯坦統計。任意數量的全同玻色子都可以處於同樣量子態。例如,激光產生的光子、玻色-愛因斯坦凝聚等等。 泡利不相容原理是原子物理學與分子物理學的基礎理論,它促成了化學的變幻多端、奧妙無窮。2013年,義大利的格蘭沙索國家實驗室(Laboratori Nazionali del Gran Sasso)團隊發佈實驗結果,違反泡利不相容原理的概率上限被設定為4.7×10-29。.
普朗克常数
普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.
尼尔斯·玻尔和普朗克常数 · 普朗克常数和自旋 ·
上面的列表回答下列问题
- 什么尼尔斯·玻尔和自旋的共同点。
- 什么是尼尔斯·玻尔和自旋之间的相似性
尼尔斯·玻尔和自旋之间的比较
尼尔斯·玻尔有166个关系,而自旋有87个。由于它们的共同之处13,杰卡德指数为5.14% = 13 / (166 + 87)。
参考
本文介绍尼尔斯·玻尔和自旋之间的关系。要访问该信息提取每篇文章,请访问: