之间導航波和量子力學詮釋相似
導航波和量子力學詮釋有(在联盟百科)10共同点: 德布罗意-玻姆理论,哥本哈根詮釋,约翰·冯·诺伊曼,马克斯·玻恩,薛定谔方程,量子力学,機率密度函數,決定論,波函数,波函數塌縮。
德布罗意-玻姆理论
一般认为,德布罗意-玻姆理论是一种量子力学诠释。亦称因果性诠释(Causal Interpretation)、存在性诠释(Ontological Interpretation)、玻姆诠释、玻姆力学(Bohmian Mechanics),有时也不严格地与导航波理论(Pilot-Wave Theory)混同。需注意,该理论有多种未规范的命名并存。因使用者和语境的不同,命名指代的理论范围和强调的理论重点可能存在差异,或者命名可能指代该理论体系的不同发展阶段,虽然它们所指代的内容通常是相关联的。 德布罗意-玻姆理论是由路易·德布罗意初创,戴维·玻姆重新发现并与巴席·海利(Basil Hiley)等合作者做进一步扩展而成的理论。此理论在历史上曾因遭受强烈反对和广泛冷遇而两度沉寂(1920s-1950s, 1950s-1970s)。和当时的物理学界的主流态度成鲜明对比,約翰·貝爾是当时该理论的少数积极声援者之一。 德布罗意-玻姆理论是一种非局域的决定性的隐变量理论。在该理论中,微观粒子可以有确定的位置和动量,因此可以用明确的轨线(trajectory)描述其运动,但对于粒子位置和速度的测量,依然必须遵守不确定性原理。粒子接受波函数的引导,通过与量子势(Quantum potential)的交互作用,表现出非局域的整体性。波函数根据薛定谔波动方程演化,从不坍缩。该理论可以完全重现与传统统计性量子力学的相同的实验结果。.
導航波和德布罗意-玻姆理论 · 德布罗意-玻姆理论和量子力學詮釋 ·
哥本哈根詮釋
哥本哈根詮釋(Copenhagen interpretation)是量子力學的一種詮釋。根據哥本哈根詮釋,在量子力學裏,量子系統的量子態,可以用波函數來描述,這是量子力學的一個關鍵特色,波函數是個數學函數,專門用來計算粒子在某位置或處於某種運動狀態的機率,測量的動作造成了波函數塌縮,原本的量子態機率地塌縮成一個測量所允許的量子態。 二十世紀早期,從一些關於小尺寸微觀物理的實驗裏,物理學家發現了很多新穎的量子現象。對於這些實驗結果,古典物理完全無法解釋。替而代之,物理學家提出了一些嶄新的理論。而這些理論能夠非常精確地解釋新發現的量子現象。但是,內嵌於這些經驗理論的,是一種關於小尺度真實世界的新模型。它們所給予的預測,常使物理學家覺得相當地反直覺。甚至它們的發現者都感受到極其驚訝。哥本哈根詮釋嘗試著,在實驗證據的範圍內,給予實驗結果和相關理論表述一個合理的解釋。換句話說,它試著回答一個問題:這些奇妙的實驗結果到底有什麼意義? 哥本哈根詮釋主要是由尼爾斯·波耳和維爾納·海森堡于1927年在哥本哈根合作研究时共同提出的。此詮釋延伸了由德国数学家、物理学家馬克斯·玻恩所提出的波函数的機率表述,之后发展为著名的不确定性原理。他們所提的詮釋嘗試要對一些量子力學所帶來的複雜問題提出回答,比如波粒二象性以及測量問題。此后,量子理论中的概率特性便不再是猜想,而是作为一条定律而存在了。量子论以及这条詮釋在整个自然科学以及哲学的发展和研究中都起着非常显著的作用。 哥本哈根詮釋給予了量子系統的量子行為一個精簡又易懂的解釋。1997年,在一場量子力學研討會上,舉行了一個關於詮釋論題的意向調查,根據這調查的結果,超過半數的物理學家對哥本哈根詮釋感到滿意;第二多的是多世界詮釋。雖然當前的傾向顯示出其它的詮釋也具有相當的競爭力,在20世紀期間,大多數的物理學家都願意接受哥本哈根詮釋。.
约翰·冯·诺伊曼
约翰·冯·诺伊曼(John von Neumann,,,),原名诺依曼·雅诺士·拉约士(Neumann János Lajos,),出生於匈牙利的美國籍猶太人数学家,现代電子計算機与博弈论的重要创始人,在泛函分析、遍历理论、几何学、拓扑学和数值分析等众多数学领域及計算機學、量子力學和经济学中都有重大貢獻。 冯·诺伊曼从小就以过人的智力与记忆力而闻名。冯·诺伊曼一生中发表了大约150篇论文,其中有60篇纯数学论文,20篇物理学以及60篇应用数学论文。他最后的作品是一个在医院未完成的手稿,后来以书名《》发布,表现了他生命最后时光的兴趣方向。 “诺依曼”和“诺伊曼”2种同音不同字的德音汉语译名写法都比较常见。另外也有资料采用其英音汉语译名“冯纽曼”。.
導航波和约翰·冯·诺伊曼 · 约翰·冯·诺伊曼和量子力學詮釋 ·
马克斯·玻恩
克斯·玻恩(Max Born,),德国物理学家与数学家,对量子力学的发展非常重要,同时在固体物理学及光学方面也有所建树。此外,他在20世纪20年代至30年代间培养了大量知名物理学家。1954年,玻恩因“量子力学方面的基础性研究,特别是给出波函数的统计解释”而获得诺贝尔物理学奖。.
薛定谔方程
在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
導航波和量子力学 · 量子力学和量子力學詮釋 ·
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
決定論
決定論(Determinism),又称拉普拉斯信条,是一种哲学立场,認為每個事件的發生,包括人類的認知、舉止、決定和行動,都有条件决定它发生,而非另外的事件发生。”决定论有很多种,取决于什么样的预先条件成为决定的因素。“各种有关决定论的理论贯穿在哲学史中,往往出于不同但有时会重叠的动机与考虑。有些形式的决定论可以从物理学上得到经验地证实或证否。与决定论直接对立的是非决定论。决定论也常常与自由意志相对比。 如果從原始宇宙以來,有一連串的事件註定地、從未中斷地發生,自由意志則是不可能的。Van Inwagen, Peter, 1983, An Essay on Free Will, Oxford: Clarendon Press.
導航波和決定論 · 決定論和量子力學詮釋 ·
波函数
在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.
導航波和波函数 · 波函数和量子力學詮釋 ·
波函數塌縮
#重定向 波函数坍缩.
上面的列表回答下列问题
- 什么導航波和量子力學詮釋的共同点。
- 什么是導航波和量子力學詮釋之间的相似性
導航波和量子力學詮釋之间的比较
導航波有38个关系,而量子力學詮釋有70个。由于它们的共同之处10,杰卡德指数为9.26% = 10 / (38 + 70)。
参考
本文介绍導航波和量子力學詮釋之间的关系。要访问该信息提取每篇文章,请访问: