之间對角矩陣和特征分解相似
對角矩陣和特征分解有(在联盟百科)3共同点: 矩阵,特征值和特征向量,逆矩阵。
矩阵
數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.
特征值和特征向量
在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.
對角矩陣和特征值和特征向量 · 特征值和特征向量和特征分解 ·
逆矩阵
逆矩陣(inverse matrix):在线性代数中,給定一个n階方陣\mathbf,若存在一n階方陣\mathbf,使得\mathbf.
上面的列表回答下列问题
- 什么對角矩陣和特征分解的共同点。
- 什么是對角矩陣和特征分解之间的相似性
對角矩陣和特征分解之间的比较
對角矩陣有11个关系,而特征分解有22个。由于它们的共同之处3,杰卡德指数为9.09% = 3 / (11 + 22)。
参考
本文介绍對角矩陣和特征分解之间的关系。要访问该信息提取每篇文章,请访问: