我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

對稱和微分方程

快捷方式: 差异相似杰卡德相似系数参考

對稱和微分方程之间的区别

對稱 vs. 微分方程

對稱是幾何形狀、系統、方程以及其他實際上或概念上之客體的一種特徵-典型地,物件的一半為其另一半的鏡射。 在數理上,如果稱一個幾何圖形或物體為對稱的話,即表示它是變形的不變量,而對稱一詞亦包含在此定義之中。若兩個物體稱為互相對稱時,即表示其中一者的形狀經幾何分割後,在不變更整體形狀的情況下,可以將分割片段重組為另一者,且反之亦然。 對稱亦可在人類與其他動物等生物體中發現(見如下之生物內的對稱)。在二維幾何中,較有趣味的幾種主要的對稱為相對於基本之歐幾里得空間等距的:平移、旋轉、鏡射及滑移鏡射。. 微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

之间對稱和微分方程相似

對稱和微分方程有1共同点(的联盟百科): 方程

方程

数学中方程可以简单的理解为含有未知数的等式。例如以下的方程: 其中的x為未知數。 如果把数学当作语言,那么方程可以为人们提供一些用来描述他们所感兴趣的对象的语法,它可以把未知的元素包含到陈述句当中(比如用“相等”这个词来构成的陈述句),因此如果人们对某些未知的元素感兴趣,但是用数学语言去精确地表达那些确定未知元素的条件时需要用到未知元素本身,这时人们就常常用方程来描述那些条件,并且形成这样一个问题:能使这些条件满足的元素是什么?在某个集合内,能使方程中所描述的条件被满足的元素称为方程在这个集合中的解(比如代入某个數到含未知数的等式,使等式中等号左右两边相等)。 求出方程的解或说明方程无解这一过程叫做解方程。可以用方程的解的存在状况为方程分类,例如,恒等式即恒成立的方程,例如(y + 2)^2.

對稱和方程 · 微分方程和方程 · 查看更多 »

上面的列表回答下列问题

對稱和微分方程之间的比较

對稱有79个关系,而微分方程有82个。由于它们的共同之处1,杰卡德指数为0.62% = 1 / (79 + 82)。

参考

本文介绍對稱和微分方程之间的关系。要访问该信息提取每篇文章,请访问: