射影几何和齐次坐标
快捷方式: 差异,相似,杰卡德相似系数,参考。
射影几何和齐次坐标之间的区别
射影几何 vs. 齐次坐标
在數學裡,投影幾何(projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、投影空間及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 雖然這些想法很早以前便已存在,但投影幾何的發展主要還是到19世紀才開始。大量的研究使得投影幾何變成那時幾何的代表學科。當使用複數的坐標(齊次坐標)時,即為研究複投影空間之理論。一些更抽象的數學(包括不變量理論、代數幾何義大利學派,以及菲利克斯·克萊因那導致古典群誕生的愛爾蘭根綱領)都建立在投影幾何之上。此一學科亦吸引了許多學者,在綜合幾何的旗幟之下。另一個從投影幾何之公理化研究誕生的領域為有限幾何。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及投影微分幾何(研究投影變換的微分不變量)。. 在數學裡,齊次坐標(homogeneous coordinates),或投影坐標(projective coordinates)是指一個用於投影幾何裡的坐標系統,如同用於歐氏幾何裡的笛卡兒坐標一般。該詞由奧古斯特·費迪南德·莫比烏斯於1827年在其著作《Der barycentrische Calcul》一書內引入。齊次坐標可讓包括無窮遠點的點坐標以有限坐標表示。使用齊次坐標的公式通常會比用笛卡兒坐標表示更為簡單,且更為對稱。齊次坐標有著廣泛的應用,包括電腦圖形及3D電腦視覺。使用齊次坐標可讓電腦進行仿射變換,並通常,其投影變換能簡單地使用矩陣來表示。 如一個點的齊次坐標乘上一個非零純量,則所得之坐標會表示同一個點。因為齊次坐標也用來表示無窮遠點,為此一擴展而需用來標示坐標之數值比投影空間之維度多一。例如,在齊次坐標裡,需要兩個值來表示在投影線上的一點,需要三個值來表示投影平面上的一點。.
之间射影几何和齐次坐标相似
射影几何和齐次坐标有(在联盟百科)6共同点: 實投影平面,平移,複數,透视投影,除环,数学。
#重定向 实射影平面.
實投影平面和射影几何 · 實投影平面和齐次坐标 · 查看更多 »
在仿射幾何,平移(translation)是將物件的每點向同一方向移動相同距離。 它是等距同構,是仿射空間中仿射變換的一種。它可以視為將同一個向量加到每點上,或將坐標系統的中心移動所得的結果。即是說,若\mathbf是一個已知的向量,\mathbf是空間中一點,平移T_(\mathbf).
射影几何和平移 · 平移和齐次坐标 · 查看更多 »
#重定向 复数 (数学).
射影几何和複數 · 複數和齐次坐标 · 查看更多 »
透视投影是为了获得接近真实三维物体的视觉效果而在二维的纸或者画布平面上绘图或者渲染的一种方法,它也称为透视图。透视投影的绘制必须根据已有的几何规则进行。.
射影几何和透视投影 · 透视投影和齐次坐标 · 查看更多 »
环(division ring),又譯反對稱體(skew field),是一类特殊的环,在环内除法运算有效。需要特别注意的是,此环内必有非0元素,且环内所有的非0量都有对应的倒数(比如说,对于x来说,存在数a,使得 a·x.
射影几何和除环 · 除环和齐次坐标 · 查看更多 »
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
射影几何和数学 · 数学和齐次坐标 · 查看更多 »
上面的列表回答下列问题
- 什么射影几何和齐次坐标的共同点。
- 什么是射影几何和齐次坐标之间的相似性
射影几何和齐次坐标之间的比较
射影几何有56个关系,而齐次坐标有26个。由于它们的共同之处6,杰卡德指数为7.32% = 6 / (56 + 26)。
参考
本文介绍射影几何和齐次坐标之间的关系。要访问该信息提取每篇文章,请访问: