之间对称差和并集相似
对称差和并集有(在联盟百科)13共同点: 不交并,布尔代数,布尔环,布尔逻辑,交集,交換律,分配律,單位元,结合律,补集,集合论,朴素集合论,数学。
不交并
在集合論,一組集合的不交并指的是一種修改過的并集運算,除了普通的并集,還標記了元素的來源。不交并還有另一個意義,指的是兩兩不交的集合的并集。.
布尔代数
在抽象代数中,布尔代数(Boolean algebra)是捕获了集合运算和逻辑运算二者的根本性质的一个代数结构(就是说一组元素和服从定义的公理的在这些元素上运算)。特别是,它处理集合运算交集、并集、补集;和逻辑运算与、或、非。 例如,逻辑断言陈述a和它的否定¬a不能都同时为真, 相似于集合论断言子集A和它的补集AC有空交集, 因为真值可以在逻辑电路中表示为二进制数或电平,这种相似性同样扩展到它们,所以布尔代数在电子工程和计算机科学中同在数理逻辑中一样有很多实践应用。在电子工程领域专门化了的布尔代数也叫做逻辑代数,在计算机科学领域专门化了布尔代数也叫做布尔逻辑。 布尔代数也叫做布尔格。关联于格(特殊的偏序集合)是在集合包含A ⊆ B和次序 a ≤ b之间的相似所预示的。考虑的所有子集按照包含排序的格。这个布尔格是偏序集合,在其中 ≤ 。任何两个格的元素,比如p .
布尔环
在数学中,布尔环R是对于所有R中的x有x^2.
布尔逻辑
布尔逻辑(Boolean algebra,台湾译--,中國大陸譯--)得名于乔治·布尔,他是爱尔兰科克的皇后学院的英国数学家,他在十九世纪中叶首次定义了逻辑的代数系统。现在,布尔逻辑在电子学、计算机硬件和软件中有很多应用。在1937年,克劳德·艾尔伍德·香农展示了布尔逻辑如何在电子学中使用。 使用集合代数作为介绍布尔逻辑的一种方式。还使用文氏图来展示各种布尔逻辑陈述所描述的集合联系。.
交集
数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.
交換律
交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.
分配律
在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.
單位元
單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .
结合律
在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.
补集
在集合论和数学的其他分支中,存在--的两种定义:--和--。.
集合论
集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.
朴素集合论
在纯数学中,朴素集合论是是探討数学基础時,用到的幾個集合論中的一個,朴素集合论主要是將用一般語言的形式處理集合問題,依赖於把集合作为叫做这个集合的“元素”或 “成员”的搜集(collection),未有形式化的理解。和用公理定義而產生的公理化集合论不同。 而公理化集合论只使用明确定义的公理列表,還有從中证明的关于集合和成员关系的種種事实,公理起源自对对象的搜集和它们的成员的理解,但为了各种目的而被謹慎地构建,例如是避免已知的各種悖论,例如理发师悖论-一個理髮師他只為(而且一定要為)城裡所有不為自己刮鬍子的人刮鬍子,那理髮師該為自己刮鬍子嗎? 集合在数学中是极其重要的;事實上,採用现代的形式化定義,多種数学对象(数、关系、函数等等)都可以用集合来構建。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么对称差和并集的共同点。
- 什么是对称差和并集之间的相似性
对称差和并集之间的比较
对称差有24个关系,而并集有29个。由于它们的共同之处13,杰卡德指数为24.53% = 13 / (24 + 29)。
参考
本文介绍对称差和并集之间的关系。要访问该信息提取每篇文章,请访问: