我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

对数积分和黎曼猜想

快捷方式: 差异相似杰卡德相似系数参考

对数积分和黎曼猜想之间的区别

对数积分 vs. 黎曼猜想

对数积分li(x)是一个特殊函数。它出现在物理学的问题中,在数论中也有重要性,主要出現在與質數定理與黎曼猜想的相關理論之中。. 黎曼猜想由德国數學家波恩哈德·黎曼(Bernhard Riemann)於1859年提出。它是數學中一個重要而又著名的未解決的問題(猜想界皇冠)。多年來它吸引了許多出色的數學家為之絞盡腦汁。.

之间对数积分和黎曼猜想相似

对数积分和黎曼猜想有(在联盟百科)3共同点: 素数質數定理自然對數

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

对数积分和素数 · 素数和黎曼猜想 · 查看更多 »

質數定理

在數論中,素数定理描述素数在自然數中分佈的漸進情況,給出隨著數字的增大,質數的密度逐漸降低的直覺的形式化描述。1896年法國數學家雅克·阿達馬和比利時數學家德拉瓦莱普森(Charles Jean de la Vallée-Poussin)先後獨立給出證明。證明用到了複分析,尤其是黎曼ζ函數。 素数的出現規律一直困惑著數學家。一個個地看,素数在正整數中的出現沒有什麼規律。可是總體地看,素数的個數竟然有規可循。對正實數x,定義π(x)為素数计数函数,亦即不大於x的素数個數。數學家找到了一些函數來估計π(x)的增長。以下是第一個這樣的估計。 其中 ln x 為 x 的自然對數。上式的意思是當 x 趨近無限,π(x)與x/ln x的比值趨近 1。但這不表示它們的數值隨著 x 增大而接近。 下面是對π(x)更好的估計: 其中 (x).

对数积分和質數定理 · 質數定理和黎曼猜想 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

对数积分和自然對數 · 自然對數和黎曼猜想 · 查看更多 »

上面的列表回答下列问题

对数积分和黎曼猜想之间的比较

对数积分有16个关系,而黎曼猜想有48个。由于它们的共同之处3,杰卡德指数为4.69% = 3 / (16 + 48)。

参考

本文介绍对数积分和黎曼猜想之间的关系。要访问该信息提取每篇文章,请访问: