之间实数和艾禮富數相似
实数和艾禮富數有(在联盟百科)9共同点: 势 (数学),可數集,微积分学,连续统假设,自然数,集合论,极限 (数学),格奥尔格·康托尔,数。
势 (数学)
在數學裡,一個有限集的元素個數是一個自然數,其大小標誌着該集合裡元素的多少。比較無窮集裡元素的多寡之方法,可在集合論裡用集合的等勢和某集合的勢比另一個集合大這兩個概念來達到目的。.
势 (数学)和实数 · 势 (数学)和艾禮富數 ·
可數集
在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
连续统假设
在數學中,連續統假設(Kontinuumshypothese;Continuum hypothesis,簡稱CH)是一個猜想,也是希尔伯特的23个问题的第一題,由康托尔提出,關於無窮集的可能大小。其為: 康托爾引入了基數的概念以比較無窮集間的大小,也證明了整數集的基數絕對小於實集的基數。康托爾也就給出了連續統假設,就是说,在无限集中,比自然数集基数大的集合中,基数最小的集合是实数集。而連續統就是實數集的一個舊稱。 更加形式地说,自然数集的基数为\aleph_0(讀作「阿列夫零」)。而连续统假设的观点认为实数集的基数为\aleph_1(讀作「阿列夫壹」)。于是,康托尔定义了绝对无限。 等價地,整數集的基数是\aleph_0而實數的基数是2^,連續統假設指出不存在一個集合S使得 \aleph_0 假設選擇公理是對的,那就會有一個最小的基數\aleph_1大於\aleph_0,而連續統假設也就等價於以下的等式: 連續統假設有個更廣義的形式,叫作廣義連續統假設(GCH),其命題為: 庫爾特·哥德尔在1940年用内模型法证明了连续统假设与ZFC的相对协调性(無法以ZFC證明為誤),保羅·柯恩在1963年用力迫法证明了连续统假设不能由ZFC推导。也就是说连续统假设獨立於ZFC。.
实数和连续统假设 · 艾禮富數和连续统假设 ·
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
集合论
集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.
极限 (数学)
极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。 “函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。.
格奥尔格·康托尔
格奥尔格·费迪南德·路德维希·菲利普·康托尔(Georg Ferdinand Ludwig Philipp Cantor,),出生于俄国的德国数学家(波羅的海德國人)。他创立了现代集合论,是實數系以至整个微积分理论体系的基础,還提出了势和良序概念的定義;康托爾確定了在兩個集合中的成員,其間一對一關係的重要性,定義了無限且有序的集合,並證明了實數比自然數更多。康托爾對這個定理所使用的證明方法,事實上暗示了“無限的無窮” 的存在。他定義了基數和序數及其算術。康托爾很清楚地自知自覺他的成果,富有極濃厚的哲學興趣。康托爾提出的超越數,最初被當時數學界同儕認為如此反直覺-甚至令人震驚-因而拒絕接受他的理論,且以利奥波德·克罗内克为首的众多数学家长期攻击。克羅內克反對代數數為可數的,而超越數為不可數的證明。 康托爾本身是一位虔誠的路德派,相信這個理論是經由上帝傳達給他;但一些基督教神學家認為康托爾的理論,是在挑戰神學中只有上帝才具有絕對而唯一的無限性質。康托爾自 1869年任職於德國哈勒大學直到 1918年在哈勒大學附屬精神病院逝世;他的抑鬱症一直再發的病因,被歸咎於當代學界的敵對態度,儘管有人將這些事件解釋為,是他本人所患有的情感雙極障礙的病徵。他所受到的嚴厲攻擊,與後來的讚譽相匹配:在 1904年倫敦皇家學會授予他西爾維斯特獎章,這是皇家學會可授予數學研究者的最高榮譽。 在康托死後數十年,維特根斯坦撰文哀悼昔時學術界指責「集合論是假借通過數學而有害處的方言」的氛圍,他認為那是「可笑」和「錯誤」的「完全無稽之談」。当代数学家绝大多数接受康托尔的理论,并认为这是数学史上一次重要的变革。大卫·希尔伯特說:「沒有人能夠把我們從康托爾建立的樂園中趕出去。」(原文另譯:我們屏息敬畏地自知在康托所鋪展的天堂裡,不會遭逢被驅逐出境的。).
数
數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.
上面的列表回答下列问题
- 什么实数和艾禮富數的共同点。
- 什么是实数和艾禮富數之间的相似性
实数和艾禮富數之间的比较
实数有96个关系,而艾禮富數有18个。由于它们的共同之处9,杰卡德指数为7.89% = 9 / (96 + 18)。
参考
本文介绍实数和艾禮富數之间的关系。要访问该信息提取每篇文章,请访问: