之间实数和策梅洛-弗兰克尔集合论相似
实数和策梅洛-弗兰克尔集合论有(在联盟百科)3共同点: 一阶逻辑,自然数,无穷。
一阶逻辑
一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
无穷
無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.
实数和无穷 · 无穷和策梅洛-弗兰克尔集合论 ·
上面的列表回答下列问题
- 什么实数和策梅洛-弗兰克尔集合论的共同点。
- 什么是实数和策梅洛-弗兰克尔集合论之间的相似性
实数和策梅洛-弗兰克尔集合论之间的比较
实数有96个关系,而策梅洛-弗兰克尔集合论有47个。由于它们的共同之处3,杰卡德指数为2.10% = 3 / (96 + 47)。
参考
本文介绍实数和策梅洛-弗兰克尔集合论之间的关系。要访问该信息提取每篇文章,请访问: