我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

完备性和高阶逻辑

快捷方式: 差异相似杰卡德相似系数参考

完备性和高阶逻辑之间的区别

完备性 vs. 高阶逻辑

在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化或哥德尔不完备定理。. 在数学中,高阶逻辑在很多方面有别于一阶逻辑。 其一是变量类型出现在量化中;粗略的说,一阶逻辑中禁止量化谓词。允许这么做的系统请参见二阶逻辑。 高阶逻辑区别于一阶逻辑的其他方式是在构造中允许下层的类型论。高阶谓词是接受其他谓词作为参数的谓词。一般的,阶为n的高阶谓词接受一个或多个(n − 1)阶的谓词作为参数,这里的n > 1。对高阶函数类似的评述也成立。 高阶逻辑更加富有表达力,但是它们的性质,特别是有关模型论的,使它们对很多应用不能表现良好。作为哥德尔的结论,经典高阶逻辑不容许(递归的公理化的)可靠的和完备的证明演算;这个缺陷可以通过使用Henkin模型来修补。 高阶逻辑的一个实例是构造演算。.

之间完备性和高阶逻辑相似

完备性和高阶逻辑有(在联盟百科)2共同点: 一阶逻辑数学

一阶逻辑

一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.

一阶逻辑和完备性 · 一阶逻辑和高阶逻辑 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

完备性和数学 · 数学和高阶逻辑 · 查看更多 »

上面的列表回答下列问题

完备性和高阶逻辑之间的比较

完备性有54个关系,而高阶逻辑有15个。由于它们的共同之处2,杰卡德指数为2.90% = 2 / (54 + 15)。

参考

本文介绍完备性和高阶逻辑之间的关系。要访问该信息提取每篇文章,请访问: