之间安德魯·懷爾斯和岩澤理論相似
安德魯·懷爾斯和岩澤理論有(在联盟百科)3共同点: 费马大定理,肯尼斯·阿蘭·黎貝,数论。
费马大定理
费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.
肯尼斯·阿蘭·黎貝
肯尼斯·阿蘭·黎貝(Kenneth Alan Ribet,簡稱肯·黎貝,),美國數學家,目前在柏克萊加州大學任教,研究領域涉及代數數論與代數幾何。 黎貝在安德魯·懷爾斯證明費馬最後定理的過程中曾經做出大量貢獻,尤其是他證明了讓-皮埃爾·塞爾提出的ε猜想(現稱黎貝定理),由這一定理可以引出費馬最後定理是谷山-志村定理的一個結論。最為重要的是,黎貝的結論說明了證明費馬最終定理並不需要整個谷山-志村定理,而僅需其在半穩定橢圓曲線情況下的特例。.
安德魯·懷爾斯和肯尼斯·阿蘭·黎貝 · 岩澤理論和肯尼斯·阿蘭·黎貝 ·
数论
數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.
安德魯·懷爾斯和数论 · 岩澤理論和数论 ·
上面的列表回答下列问题
- 什么安德魯·懷爾斯和岩澤理論的共同点。
- 什么是安德魯·懷爾斯和岩澤理論之间的相似性
安德魯·懷爾斯和岩澤理論之间的比较
安德魯·懷爾斯有27个关系,而岩澤理論有18个。由于它们的共同之处3,杰卡德指数为6.67% = 3 / (27 + 18)。
参考
本文介绍安德魯·懷爾斯和岩澤理論之间的关系。要访问该信息提取每篇文章,请访问: