我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

宇宙速度和轨道速度

快捷方式: 差异相似杰卡德相似系数参考

宇宙速度和轨道速度之间的区别

宇宙速度 vs. 轨道速度

宇宙速度(cosmic velocity),是指物體從地球出發,要脫離天體重力場的四個較有代表性的初始速度的統稱。計算宇宙速度的基本公式如下: 航天器按其任務的不同,需要達到這四個宇宙速度的其中一個。例如人類第一個發射成功的星際探測器月球1号就需要達到第二宇宙速度,才能擺脫地球重力。而旅行者2号則需要達到第三宇宙速度,才能離開太陽系。 宇宙速度的概念也可应用于在其他天体發射航天器的情況。例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。. 天体,一般是行星,天然卫星或人造卫星以及聚星系统中的恒星的轨道速度,是指该天体环绕系统的质心,通常是一个较大质量天体运转的速度。它即可被用来表示天体完成一周运转的平均轨道速度,也可指其瞬间轨道速度,即其运行在某个特定点上的速度。 天体运行在轨道任一点上的速度能够通过该点与中心天体的距离计算出来;而天体的轨道能量则与其所在位置无关,轨道能量等于动能加势能之和。 故,在理想状态下轨道速度(v\)为:.

之间宇宙速度和轨道速度相似

宇宙速度和轨道速度有(在联盟百科)3共同点: 动能万有引力常数質心

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

动能和宇宙速度 · 动能和轨道速度 · 查看更多 »

万有引力常数

万有引力常数(记作 G ),是一个包含在对有质量的物体间的万有引力的计算中的实验物理常数。它出现在牛顿的万有引力定律和爱因斯坦的广义相对论中。也称作重力常數或牛顿常数。不应将其与小写的 g 混淆,后者是局部引力场(等于局部引力引起的加速度),尤其是在地球表面。 根据万有引力定律,两物体间的吸引力( F )与二者的质量( m1 和 m2 )的乘积成正比,而与他们之间的距离( ''r'' )的平方成反比: 其中的比例常数 G 即是万有引力常数。 万有引力常数大概是物理常数中最难测量的了。.

万有引力常数和宇宙速度 · 万有引力常数和轨道速度 · 查看更多 »

質心

質心為多質點系統的質量中心。若對該點施力,系統會沿著力的方向運動、不會旋轉。質點位置對質量加權取平均值,可得質心位置。以質心的概念計算力學通常比較簡單。質心對應的英文有 center of mass 與 barycenter(或 barycentre,源自古希臘的 βαρύς heavy + κέντρον centre)。後者指兩個或多個物體互繞物體的質量中心。 Barycenter 在天文學和天文物理上是很重要的一個觀念。從一個物體的質心轉移一個距離至彼此的質心,可以簡化成二體問題來進行計算。在兩個天體當中,有一個比另一個大許多的情況下(在相對封閉的環境),質心通常會位於質量較大的天體之內。因而較小的天體會在軌道上繞著共同的質心運動,而較大的僅僅只會略微"抖動"。地月系統就是這樣的狀況,倆者的質心距離地球的中心4,671公里,而地球的半徑是6,378公里。當兩個天體的質量差異不大時,質心通常會介於兩者之間,而這兩個天體會呈現互繞的現象。冥王星和它的衛星夏戎,還有許多雙小行星和聯星,都是這種情況的例子。木星和太陽的質量相差雖然超過1,000倍,但因為它們之間的距離較大,也是這一類型的例子。 在天文學,質心座標是非轉動座標,其原點是兩個或多個天體的質心所在。國際天球參考系統是質心座標之一,它的原點是太陽系的質心所在之處。 在幾何學,質心不等同於重心,是二維形狀的幾何中心。.

宇宙速度和質心 · 質心和轨道速度 · 查看更多 »

上面的列表回答下列问题

宇宙速度和轨道速度之间的比较

宇宙速度有41个关系,而轨道速度有12个。由于它们的共同之处3,杰卡德指数为5.66% = 3 / (41 + 12)。

参考

本文介绍宇宙速度和轨道速度之间的关系。要访问该信息提取每篇文章,请访问: