徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

宇宙距离尺度和超新星

快捷方式: 差异相似杰卡德相似系数参考

宇宙距离尺度和超新星之间的区别

宇宙距离尺度 vs. 超新星

宇宙距離尺度(cosmic distance ladder;亦作銀河系外距離尺度,Extragalactic Distance Scale)是天文學家決定天體距離的一系列方法。要對一個天體進行真正「直接」的距離測量,只有在天體與地球之間夠近的情況下才能做到(距離為1000秒差距)。測量距離更遙遠天體距離的技術是奠基在各種已經用近距離天體測量法校正過其相關性的方法。這幾種方法依賴標準燭光,這是一些光度已知的天體。 出現階梯的類比是因為沒有一種方法或技術可以測量天文學的範圍所遇到的所有距離尺度。相反的,一種方法可以用來測量近距離天體的距離,另一種方法可以測量鄰近的中等距離天體,依此類推。每個階梯的梯級提供的資訊,可以用來確定更高的下一個階梯的梯級。. 超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

之间宇宙距离尺度和超新星相似

宇宙距离尺度和超新星有(在联盟百科)26共同点: 天文与天体物理学报太阳系中子星主序星仙女座星系哈勃定律公里光年光回波光變曲線秒差距紅移絕對星等螺旋星系聯星视星等超新星遗迹錢德拉塞卡極限银河系金屬量Ia超新星恒星恆星演化標準燭光星云新星

天文与天体物理学报

天文与天体物理学报(英文:Astronomy and Astrophysics)是一家欧洲的纸质学术期刊,领域为理论、观测以及仪器方面的天文学和天体物理学研究。.

天文与天体物理学报和宇宙距离尺度 · 天文与天体物理学报和超新星 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

太阳系和宇宙距离尺度 · 太阳系和超新星 · 查看更多 »

中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

中子星和宇宙距离尺度 · 中子星和超新星 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

主序星和宇宙距离尺度 · 主序星和超新星 · 查看更多 »

仙女座星系

仙女座星系(Andromeda Galaxy,國際音標為:,也稱為梅西爾31、星表编号为M31和NGC 224,在舊文獻中曾經稱為仙女座星雲)是一個螺旋星系,距離地球大約250萬光年,是除麦哲伦云(地球所在的银河系的伴星系)以外最近的星系。位於仙女座的方向上,是人類肉眼可見(3.4等星)最遠的深空天體。 仙女座星系被相信是本星系群中最大的星系,直径约20万光年,外表颇似银河系。本星系群的成員有仙女星系、銀河系、三角座星系,還有大約50個小星系。但根據改進的測量技術和最近研究的數據結果,科學家現在相信銀河系有許多的暗物質,並且可能是在這個集團中質量最大的。 然而,史匹哲太空望遠鏡最近的觀測顯示仙女座星系有將近一兆(1012)顆恆星,數量遠比我們的銀河系為多。在2006年重新估計銀河系的質量大約是仙女座星系的50%,大約是7.1M☉.

仙女座星系和宇宙距离尺度 · 仙女座星系和超新星 · 查看更多 »

哈勃定律

在物理宇宙學裏,哈伯定律(Hubble's law)表明,來自遙遠星系光線的紅移與它們的距離成正比。這條定律是因證實者哈伯而命名。它被認為是的第一個觀察依據,和今天經常被援引作為支持大爆炸的一個重要證據。 在宇宙学研究中,哈伯定律成为宇宙膨胀理论的基础,以方程式表示 其中,v 是由紅移現象測得的星系遠離速率,H_0 是哈伯常數,D是星系與觀察者之間的距離。 2012年12月20日,美國國家航空暨太空總署的威爾金森微波各向異性探測器實驗團隊宣布,哈伯常數為69.32 ± 0.80 (km/s)/Mpc。 2013年3月21日,從普朗克卫星觀測獲得的数据,哈伯常數為67.80 ± 0.77 千米每秒每百万秒差距(67.80 ± 0.77 km/s/Mpc)。,table 9.

哈勃定律和宇宙距离尺度 · 哈勃定律和超新星 · 查看更多 »

公里

--亦稱--( → kilometre、),是一种長度計量單位,等於一千米,是國際單位制之一,符號为km。.

公里和宇宙距离尺度 · 公里和超新星 · 查看更多 »

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

光年和宇宙距离尺度 · 光年和超新星 · 查看更多 »

光回波

光回波(回光/回声光)是天文学的一种现象。类似于声音的反射, 光回波常在星体光度快速增加或脉冲时产生, 比如在对新星的观察中, 被星际尘埃反射出的光在沿直线的光之后很长一段时间才到达观察者。由于它们的几何形状,回光可以令人产生超光速的错觉。.

光回波和宇宙距离尺度 · 光回波和超新星 · 查看更多 »

光變曲線

光度曲線是天文學上表示天體相對於時間的亮度變化圖形,是時間的函數,通常會顯示出一種特定的頻率間隔或是帶狀。光度曲線會呈現週期性,像是食雙星、造父變星和其他的各種變星,或是非週期性的,像是新星、激變變星、超新星或微透鏡事件,的光度曲線。研究光度曲線,並配合其他的觀測,能獲得重要的訊息,像是導致這種過程的物理機制,或是制約這種行為的物理理論。.

光變曲線和宇宙距离尺度 · 光變曲線和超新星 · 查看更多 »

秒差距

差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.

宇宙距离尺度和秒差距 · 秒差距和超新星 · 查看更多 »

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

宇宙距离尺度和紅移 · 紅移和超新星 · 查看更多 »

絕對星等

在天文學上,絕對星等(Absolute magnitude,M)是指把天體放在指定的距離时(10秒差距)天体所呈现出的视星等(Apparent magnitude,m)。此方法可把天體的光度在不受距離的影響下,作出客觀的比較。.

宇宙距离尺度和絕對星等 · 絕對星等和超新星 · 查看更多 »

螺旋星系

螺旋星系是星系的類型之一,但哈伯在1936年最初的描述是星雲的領域(pp. 124–151),並且列在哈伯序列,成為其中的一部分。多數的螺旋星系包含恆星的平坦、旋轉盤面,氣體和塵埃,和中央聚集高濃度恆星,稱為核球的核心。這些通常被許多恆星構成的黯淡暈包圍著,其中許多恆星聚集在球狀星團內。 螺旋星系是以它們從核心延伸到星盤的螺旋結構命名。螺旋臂是恆星正在形成的區域,並且因為是年輕、炙熱的OB星居住的區域,所以比周圍明亮。 大約三分之二的螺旋星系都有附加的,形狀像是棒子的結構,從中心的核球突出,並且螺旋臂從棒的末端開始延伸。棒旋星系相較於無棒的表兄弟的比率可能在宇宙的歷史中改變,80億年前大約只有10%有棒狀構造,25億年前大約是四分之一,直到目前在可觀測宇宙(哈伯體積)已經超過三分之二有棒狀構造。 在1970年代,雖然很難從地球在銀河系中的位置很難觀察到棒狀結構,但我們的銀河系已經被證實為棒旋星系 。在銀河中心的恆星形成棒狀結構,最令人信服的證據來自最近的幾個調查,包括史匹哲太空望遠鏡。 包含不規則星系在內,現今宇宙中的星系有大約60%是螺旋星系。 它們大多是在低密度區域被發現,在星系團的中心則很罕見。.

宇宙距离尺度和螺旋星系 · 螺旋星系和超新星 · 查看更多 »

聯星

聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.

宇宙距离尺度和聯星 · 聯星和超新星 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

宇宙距离尺度和视星等 · 视星等和超新星 · 查看更多 »

超新星遗迹

超新星遗迹(Supernova remnant,缩写为SNR)是超新星爆发时抛出的物质在向外膨胀的过程中与星际介质相互作用而形成的延展天体,形状有云状、壳状等,差异很大。截至2006年,已经在银河系中发现了200余个超新星遗迹,在大麦云、小麦云、M31、M33 等邻近的河外星系中也有发现。.

宇宙距离尺度和超新星遗迹 · 超新星和超新星遗迹 · 查看更多 »

錢德拉塞卡極限

錢德拉塞卡極限(Chandrasekhar Limit),以印度裔美籍天文物理學家蘇布拉馬尼揚·錢德拉塞卡命名,是無自轉恆星以電子簡併壓力阻擋重力塌縮所能承受的最大質量,這個值大約是1.4倍太陽質量 ,計算的結果會依據原子核的結構和溫度而有些差異, F. X. Timmes, S. E. Woosley, and Thomas A. Weaver, Astrophysical Journal 457 (February 1, 1996), pp.

宇宙距离尺度和錢德拉塞卡極限 · 超新星和錢德拉塞卡極限 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

宇宙距离尺度和银河系 · 超新星和银河系 · 查看更多 »

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

宇宙距离尺度和金屬量 · 超新星和金屬量 · 查看更多 »

Ia超新星

超新星(Type Ia supernova)出現在其中的一顆是白矮星,而另一顆可以是巨星或低質量恆星的聯星系統(兩顆軌道互繞的恆星)。白矮星是已完成其正常命週期核融合反應的恆星殘骸。但是,一般最常見的碳-氧白矮星,如果他們的溫度上升得足夠高,仍有進行核融合反應,進一步釋放大量能量的能力。物理上,低自轉速率的碳-氧白矮星會低於1.44太陽質量()有點令人費解的是,儘管與電子簡併壓力無法阻擋災難性坍縮的錢德拉塞卡質量(Chandrasekhar mass)有所不同,這個限制通常被稱為錢德拉塞卡極限。如果一顆白矮星可以從其聯星系統的伴星逐漸吸積質量,一般假設當其接近此一質量極限時,核心將達到碳融合的點火溫度。如果白矮星與另一顆恆星合併(極為罕見的事件),它將在瞬間就超越了質量限制並開始坍縮,也會再次提升溫度超越核融合的燃點。在啟動核融合之後幾秒鐘,白矮星絕大部分的質量會經歷熱失控反應,釋放出極為巨大的能量(1–),在超新星爆炸中解除恆星的束縛。 這種類型的超新星由於爆炸的白矮星通過吸積的機制使質量幾乎一致,因此產生一致的峰值光度。因為超新星的視星等隨著距離而改變,這種穩定的最大光度使它們的爆發可以做為標準燭光,用來測量宿主星系的距離。 在2015年5月,NASA報告克卜勒太空望遠鏡觀測新發現一顆Ia超新星,KSN 2011b,爆炸的完整過程:爆炸前、爆炸中和爆炸後。前超新星時段的詳細資訊可能可以讓科學家對暗能量有更好的瞭解。.

Ia超新星和宇宙距离尺度 · Ia超新星和超新星 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

宇宙距离尺度和恒星 · 恒星和超新星 · 查看更多 »

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.

宇宙距离尺度和恆星演化 · 恆星演化和超新星 · 查看更多 »

標準燭光

標準燭光是天文學中已經知道光度的天體,而在宇宙學和星系天文學中獲得距離的幾種重要方法都是以標準燭光做基礎的。比較已知的光度(或是它的對應函數的數值,絕對星等)和他的觀測亮度(視星等),距離可以經由下面的公式計算而得: 此處的D是距離,kpc是千秒差距(103 秒差距), m是視星等,M是絕對星等(兩者均處於靜止的狀態下)。 (這與天體的距離模數是緊密相關的。) 標準燭光有下列這些類型:.

宇宙距离尺度和標準燭光 · 標準燭光和超新星 · 查看更多 »

星云

星雲(源自拉丁文的:nebulae或nebulæ,與ligature或nebulas,意思就是“雲”)是塵埃、氫氣、氦氣、和其他電離氣體聚集的星際雲。原本是天文學上通用的名詞,泛指任何天文上的擴散天體,包括在銀河系之外的星系(一些過去的用法依然留存著,例如仙女座星系依然使用愛德溫·哈伯發現它是星系之前的名稱,被稱為仙女座星雲)。星雲通常也是恆星形成的區域,例如鷹星雲,這個星雲刻畫出NASA最著名的影像,即創生之柱。在這個區域形成的氣體、塵埃和其他材料擠在一起,聚集了巨大的質量,這吸引了更多的質量,最後大到足以形成恆星。據了解,剩餘的材料還可以形成行星和行星系的其它天體。.

宇宙距离尺度和星云 · 星云和超新星 · 查看更多 »

新星

新星是激变变星的一类,是由吸積在白矮星表面的氫造成劇烈的核子爆炸的現象。这类星通常原本都很暗,难以发现,爆发时突然增亮,被认为是新产生的恒星,因此而得名。新星按光度下降速度分为快新星(NA)、中速新星(NAB)、慢新星(NB)和甚慢新星(NC),爆发时亮度会增加几万、几十万甚至几百万倍,持续几星期或几年。但不能和Ia超新星或其它恆星的爆炸混淆,包括加州理工學院在2007年5月首度發現的發光紅新星。 目前在银河系中已发现超过200颗新星。.

宇宙距离尺度和新星 · 新星和超新星 · 查看更多 »

上面的列表回答下列问题

宇宙距离尺度和超新星之间的比较

宇宙距离尺度有79个关系,而超新星有223个。由于它们的共同之处26,杰卡德指数为8.61% = 26 / (79 + 223)。

参考

本文介绍宇宙距离尺度和超新星之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »