之间宇宙微波背景和康普頓散射相似
宇宙微波背景和康普頓散射有(在联盟百科)4共同点: 诺贝尔物理学奖,黑洞,汤姆孙散射,星系团。
诺贝尔物理学奖
| title.
宇宙微波背景和诺贝尔物理学奖 · 康普頓散射和诺贝尔物理学奖 ·
黑洞
黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.
汤姆孙散射
物理学中,汤姆孙散射是指电磁辐射和一个自由带电粒子产生的弹性散射。入射电磁波的电场使粒子加速,从而激发粒子产生和入射波频率相同的辐射(散射波)。汤姆孙散射是康普顿散射在低能量区的近似。汤姆孙散射是等离子物理学中的一个重要现象,它首先由英国物理学家约瑟夫·汤姆孙解释。 只要粒子的运动是非相对论性的(即速度远小于光速),粒子加速的主要原因都来自入射波的电场分量,而磁场的作用可被忽略。粒子将会在电场振动的方向上开始运动,从而产生电磁偶极辐射。运动粒子在垂直於运动方向上的辐射最强,而辐射沿着粒子的运动方向产生偏振。从而,取决于观察者的位置,从一个小体元散射出的电磁波存在程度不同的偏振。.
星系团
星系团(Galaxy clusters、Cluster of galaxies)是由星系组成的自引力束缚体系,通常尺度在数百万秒差距,包含了数百到数千个星系。包含了少量星系的星系团叫做星系群。银河系所在的星系群叫做本星系群,成员星系大约为50个。距离本星系群较近的一个星系团是室女座星系团,包含了超过2500个星系。 许多星系团是明亮的X射线源,其中X射线辐射是由强引力势阱束缚住的高温气体发出的。星系团的气体质量可达发光星系总质量的3-5倍。研究星系团中物质的分布能够为暗物质的存在提供证据。 不同星系团中,各种类型的星系所占的比例很不一样。研究发现,椭圆星系的比例与星系团的形态密切相关,如果一个星系团中椭圆星系所占的比例很大,那么这个星系团的形状倾向于规则和对称,如果椭圆星系所占的比例很小,星系团一般显示出不规则的形状。.
宇宙微波背景和星系团 · 康普頓散射和星系团 ·
上面的列表回答下列问题
- 什么宇宙微波背景和康普頓散射的共同点。
- 什么是宇宙微波背景和康普頓散射之间的相似性
宇宙微波背景和康普頓散射之间的比较
宇宙微波背景有134个关系,而康普頓散射有28个。由于它们的共同之处4,杰卡德指数为2.47% = 4 / (134 + 28)。
参考
本文介绍宇宙微波背景和康普頓散射之间的关系。要访问该信息提取每篇文章,请访问: