徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

宇宙和宇宙学

快捷方式: 差异相似杰卡德相似系数参考

宇宙和宇宙学之间的区别

宇宙 vs. 宇宙学

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。. 宇宙學(英文:Cosmology)或宇宙論,這個詞源自於希臘文的κοσμολογία(cosmologia, κόσμος (cosmos) order + λογια (logia) discourse)。宇宙學是對宇宙整體的研究,並且延伸探討至人類在宇宙中的地位。雖然宇宙學這個詞是最近才有的,人們對宇宙的研究已經有很長的一段歷史,牽涉到科學、哲學、神秘学以及宗教。.

之间宇宙和宇宙学相似

宇宙和宇宙学有(在联盟百科)18共同点: 大千世界大爆炸宇宙加速膨脹宇宙學常數宇宙微波背景輻射宇宙背景輻射宇宙暴脹尼古拉·哥白尼廣義相對論紅移牛顿万有引力定律盖天说超新星银河系暗物质暗能量星系日心说

大千世界

大千世界(Trisahasra-maha-sahasra-lokadhatu,直譯即為三千大千世界),是佛教说明世界组织的情形。每一个小世界(lokadhātu,組成宇宙的要素;Cakkavāla,圍繞小世界的鐵圍),其形式皆同。指由小、中、大等三種「千世界」所成的世界。由小千、中千輾轉集成的大千世界,謂之「三千世界」,或「三千大千世界」。 以須彌山為中心,上自色界初禪,下至大地底下的風輪,其間包括四大洲、日、月、欲界六天及色界梵世天等為一小世界。一千個小世界,名一小千世界。一千個小千世界,為一中千世界。集一千中千世界,上覆盖四禅九天,为一大千世界。 佛教的宇宙觀中說明:一個三千大千世界只是一尊佛所渡化眾生的世界,而所有的世間(器世間bhājana-loka/okāsaloka;有情世間sattva-loka/sattaloka;五陰世間saṅkhāraloka)則是因為有無數無量的佛,所以有無數無量的三千大千世.

大千世界和宇宙 · 大千世界和宇宙学 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

大爆炸和宇宙 · 大爆炸和宇宙学 · 查看更多 »

宇宙加速膨脹

宇宙加速膨脹是宇宙的膨脹速度越來越快的現象。以天文學術語來說,就是宇宙標度因子 a(t) 的二次導數是正值,這意味著星系遠離地球的速度,隨著時間演進,應該會持續地增快。這速度是哈勃定律裏所提到的退行速度。於1998年觀測Ia超新星得到的數據,提示宇宙的膨脹速度正在加快。物理學者索尔·珀尔马特、布莱恩·施密特與亚当·里斯「透過觀測遙遠超新星而發現了宇宙加速膨脹」,因此,共同榮獲2006年邵逸夫天文學獎與2011年諾貝爾物理學獎。.

宇宙和宇宙加速膨脹 · 宇宙加速膨脹和宇宙学 · 查看更多 »

宇宙學常數

宇宙學常數(cosmological constant)或宇宙常數由阿爾伯特·愛因斯坦首先提出,現前常標為希臘文「Λ」,與度規張量相乘後成為宇宙常數項\Lambda g_而添加在愛因斯坦方程式中,使方程式能有靜態宇宙的解。若不加上此項,則廣義相對論所得原版本的愛因斯坦方程式會得到動態宇宙的結果。 這是出於愛因斯坦對靜態宇宙的哲學信念。在哈伯提出膨脹宇宙的天文觀測結果哈伯紅移後,愛因斯坦放棄宇宙學常數,認為是他「一生中最大的錯誤」。 但是1998年天文物理與宇宙學對宇宙加速膨脹的研究則讓宇宙學常數死而復生,認為雖然其值很小,但可能不為零。宇宙常數項的貢獻被認為與暗能量有關。.

宇宙和宇宙學常數 · 宇宙学和宇宙學常數 · 查看更多 »

宇宙微波背景輻射

#重定向 宇宙微波背景.

宇宙和宇宙微波背景輻射 · 宇宙学和宇宙微波背景輻射 · 查看更多 »

宇宙背景輻射

#重定向 宇宙微波背景.

宇宙和宇宙背景輻射 · 宇宙学和宇宙背景輻射 · 查看更多 »

宇宙暴脹

在物理宇宙學中,宇宙暴脹,簡稱暴脹,是早期宇宙的一種空間膨脹呈加速度狀態的過程。 暴脹時期在大爆炸後10−36秒開始,持續到大爆炸後10−33至10−32秒之間。暴脹之後,宇宙繼續膨脹,但速度則低得多。 「暴脹」一詞可以指有關暴脹的假說、暴脹理論或者暴脹時期。這一假說以及「暴脹」一詞,最早於1980年由美國物理學家阿蘭·古斯提出。 在微觀暴脹時期的量子漲落,經過暴脹放大至宇宙級大小,成為宇宙結構成長的種子,這解釋了宇宙宏觀結構的形成。很多宇宙學者認為,暴脹解釋了一些尚未有合理答案的難題:為什麼宇宙在各個方向都顯得相同,即各向同性,為甚麼宇宙微波背景輻射會那麼均勻分佈,為甚麼宇宙空間是那麼平坦,為甚麼觀測不到任何磁單極子? 雖然造成暴脹的詳細粒子物理學機制還沒有被發現,但是基本繪景所作出了多項預測已經被觀測所證實。導致暴脹的假想粒子稱為暴脹子,其伴隨的場稱為暴脹場。 2014年3月17日,BICEP2科學家團隊宣佈在B模功率譜中可能探測到暴脹所產生的重力波。這為暴脹理論提供了強烈的證據,對於標準宇宙學來說是一項重要的發現 。可是,BICEP2團隊於6月19日在《物理評論快報》發佈的論文承認,觀測到的信號可能大部分是由銀河系塵埃的前景效應造成的,對於這結果的正確性持保留態度。必需要等到十月份普朗克衛星數據分析結果發佈之後,才可做定論。9月19日,在對普朗克衛星數據進行分析後,普朗克團隊發佈報告指出,銀河系內塵埃也可能會造成這樣的宇宙信號,但是並沒有排除測量到有意義的宇宙信號的可能性。 除了暴脹理論之外,還有非標準宇宙學理論,包括前大爆炸理論和旋量時空理論等。一般來說,暴脹在前大爆炸理論中並不是必須的。路易斯·貢薩雷斯-梅斯特雷斯(Luis Gonzalez-Mestres)在1996至1997年所提出的旋量時空理論中,每一個隨動觀測者都會產生一個特殊的空間方向,而宇宙微波背景中也會自然存在B模。普朗克衛星數據可能證實了這一特殊空間方向的存在。 (University of Texas Mathematical Physics Archive, paper 14-16).

宇宙和宇宙暴脹 · 宇宙学和宇宙暴脹 · 查看更多 »

尼古拉·哥白尼

尼古拉·哥白尼(Nicolaus Copernicus,Mikołaj Kopernik,)是文艺复兴时期波兰数学家、天文学家,他提倡日心说模型,提到太陽為宇宙的中心。1543年哥白尼临终前发表了《天體運行論》一般認為他著的是現代天文學的起步點。它开启了哥白尼革命,并对推动科学革命作出了重要贡献。 哥白尼出生于皇家普魯士,该地区自1466年隶属于波兰王国。哥白尼获得了教会法规博士学位,同时也是一名医生,通晓多国语言,了解经典文学,能够胜任翻译,做过执政官、外交官,也是一名经济学家(后续几项都没有学历学位)。1517年,哥白尼总结了货币量化理论,成为当今经济学的重要基础之一。1519年,哥白尼在托马斯·格雷沙姆之前总结出了劣幣驅逐良幣理论的前身。.

宇宙和尼古拉·哥白尼 · 宇宙学和尼古拉·哥白尼 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

宇宙和廣義相對論 · 宇宙学和廣義相對論 · 查看更多 »

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

宇宙和紅移 · 宇宙学和紅移 · 查看更多 »

牛顿万有引力定律

万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.

宇宙和牛顿万有引力定律 · 宇宙学和牛顿万有引力定律 · 查看更多 »

盖天说

天说是中国古代的一种宇宙学说。认为天像一个圆锅盖在大地之上,故名“盖天说”,與渾天說和宣夜說並稱為「論天三家」。 据《晋书·天文志》记载:“其言天似盖笠,地法覆槃,天地各中高外下。北极之下为天地之中,其地最高,而滂沲四,三光隐映,以为昼夜。天中高于外衡冬至日之所在六万里。北极下地高于外衡下地亦六万里,外衡高于北极下地二万里。天地隆高相从,日去地恒八万里。” 盖天说最早在西周时期已经出现,当时认为天尊地卑,天圆地方,认为“天圆如张盖,地方如棋局”,穹隆状的天覆盖在呈正方形的平直大地上。这是盖天说的雏形。后来在发展过程中也有几种不同的见解。由于圆盖形的天与正方形的大地边缘无法吻合。于是又有人提出,天并不与地相接,而是像一把大伞一样高高悬在大地之上,地的周边有八根柱子支撑着,天和地的形状犹如一座顶部为圆穹形的凉亭。共工怒触不周山和女娲补天的神话正是以此为依据的。到战国时期,对上述的盖天说开始发生怀疑,于是修改成“天似盖笠,地法覆槃”,就是说天好像斗笠那样是圆形的,地像是覆盖着倒放的盘子那样,并且认为北极位于天穹的中央,日月星辰绕之旋转不息。 到了西汉,仍然有人坚持这种说法。当时成书的《周髀算经》就是盖天说的代表作。 盖天说通常把日月星辰的出没解释为它们运行时远近距离变化所致,离远了就看不见,离近了就看见它们照耀。这种解释比较牵强。盖天说被越来越多的天文观测事实所否定。西汉的扬雄提出了难盖天八事,否定了盖天说。 但是,盖天说在中国古代仍然有一定影响力。晋朝的虞耸提出的穹天论是盖天说的沿袭和发展。南北朝时还出现了浑盖合一说。 还有一种观点:天道曰圓,地道曰方。天圆地方,指的是道,不是形状。 用Squaring the circle这种观点看,天地根本就不在一个纬度上。.

宇宙和盖天说 · 宇宙学和盖天说 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

宇宙和超新星 · 宇宙学和超新星 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

宇宙和银河系 · 宇宙学和银河系 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

宇宙和暗物质 · 宇宙学和暗物质 · 查看更多 »

暗能量

在物理宇宙學中,暗能量是一種充溢空間的、增加宇宙膨脹速度的難以察覺的能量形式。暗能量假說是當今對宇宙加速膨脹的觀測結果的解釋中最為流行的一種。在宇宙標準模型中,暗能量佔據宇宙68.3%的質能。 Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 46, Accessed Oct.

宇宙和暗能量 · 宇宙学和暗能量 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

宇宙和星系 · 宇宙学和星系 · 查看更多 »

日心说

日心说,也称为地动说,是关于天体运动的和地心说相对立的学说,它认为太阳是宇宙的中心,而不是地球。 哥白尼提出的日心说,推翻了长期以来居于统治地位的地心说,实现了天文学的根本变革。.

宇宙和日心说 · 宇宙学和日心说 · 查看更多 »

上面的列表回答下列问题

宇宙和宇宙学之间的比较

宇宙有149个关系,而宇宙学有55个。由于它们的共同之处18,杰卡德指数为8.82% = 18 / (149 + 55)。

参考

本文介绍宇宙和宇宙学之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »