之间學科列表和统计学相似
學科列表和统计学有(在联盟百科)20共同点: 天文學,學科列表,密码学,心理学,哲学,社会科学,生物統計學,迴歸分析,自助法,自然科学,英語,概率,概率论,方差分析,政府,数学,数据挖掘,教育学,拉丁语,時間序列。
天文學
天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).
學科列表
這是一個學科的列表。學科是在大學教學(教育)與研究的知識分科。學科是被發表研究和學術雜誌、學會和系所所定義及承認的。 領域通常有子領域或分科,而其之間的分界是隨便且模糊的。 在中世紀的歐洲,大學裡只有四個學系:神學、醫學、法學和藝術,而最後一個的地位稍微低於另外三個的地位。在中世紀至十九世紀晚期的大學世俗化過程中,傳統的課程開始增輔進了非古典的語言及文學、物理、化學、生物和工程等學科,現今的學科起源便源自於此。到了二十世紀初期,教育學、社會學及心理學也開始出現在大學的課程裡了。 以下簡表展示出各大類科目,以及各大類科目中的主要科目。 "*"記號表示此一領域的學術地位是有爭議的。注意有些學科的分類也是有爭議的,如人類學和語言學究竟屬於社會科學亦或是人文學科,以及计算机技术是工程学科亦或是形式科学。.
密码学
密碼學(Cryptography)可分为古典密码学和现代密码学。在西欧語文中,密码学一词源於希臘語kryptós“隱藏的”,和gráphein“書寫”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。 密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密碼學者罗纳德·李维斯特解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當于密碼學與純數學的差异。密碼學的发展促進了计算机科学,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自动柜员机的晶片卡、電腦使用者存取密碼、電子商務等等。.
心理学
-- 心理学是一门研究人類以及其他动物的內在心理歷程、精神功能和外在行为的科学,既是一门理论学科,也是一门应用学科。包括理论心理学与应用心理学两大领域。 心理學研究涉及意識、感覺、知覺、認知、動機、情绪、人格、行為和人際關係等眾多領域,影響其他學科的發展,例如:教育學、管理學、傳播學、社會學、經濟學、精神病學、統計學、計算機科學以及文學等等。心理學一方面嘗試用大腦運作來解釋個体基本的行為與心理機能,同時,心理學也嘗試解釋個體心理機能在社會行為與社會動力中的角色。心理學家從事基礎研究的目的是描述、解釋、預測和控制行為。應用心理學家還有第五個目的——提高人類生活的質量。這些目標構成了心理學事業的基礎。.
哲学
哲學(philosophy)是研究普遍的、根本的问题的学科,包括存在、知识、价值、理智、心灵、语言等领域。哲学与其他学科的不同是其批判的方式、通常是系统化的方法,并以理性论证為基礎。在日常用语中,其也可被引申为个人或团体的最基本信仰、概念或态度。.
社会科学
会科学是用科学的方法,研究人类社会的種種现象。如社會學研究人類社會(主要是當代),政治學研究政治、政策和有關的活動,經濟學研究資源分配。广义的“社会科学”,是人文学科和社会科学的统称。 社會科學起源於西元1930年出版的《社會科學百科全書》(Encyclopaedia of the Social Sciences),其內容包含了社會學、人類學、經濟學、政治學、犯罪學、生物學、地理學、醫學、教育學、心理學、語言學、倫理學、藝術、社會工作學及法律學等與社會科學概論相關的一門學科。.
生物統計學
生物統計學(有时也称生物计量學)是统计学的原理和方法在生物学研究中的应用,是一门应用数学,最常见的是应用于医学。.
學科列表和生物統計學 · 生物統計學和统计学 ·
迴歸分析
迴歸分析()是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。 迴歸分析是建立因變數Y(或稱依變數,反應變數)與自變數X(或稱獨變數,解釋變數)之間關係的模型。簡單線性回歸使用一個自變量X,複迴歸使用超過一個自變量(X_1, X_2...
自助法
在统计学中,自助法(Bootstrap Method,Bootstrapping或自助抽樣法)是一种从给定训练集中有放回的均匀抽样,也就是说,每当选中一个样本,它等可能地被再次选中并被再次添加到训练集中。自助法由Bradley Efron于1979年在《Annals of Statistics》上發表。當樣本來自总體,能以正态分布來描述,其抽樣分布(Sampling Distribution)為正态分布(The Normal Distribution);但當樣本來自的总體無法以正态分布來描述,則以漸進分析法、自助法等來分析。採用隨機可置換抽樣(random sampling with replacement)。对于小数据集,自助法效果很好。.
自然科学
自然科学是研究大自然中有机或无机的事物和现象的科学。自然科学包括天文學、物理学、化学、地球科学、生物学等等。.
英語
#重定向 英语.
概率
--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
方差分析
變異數分析或變方分析(Analysis of variance,簡稱ANOVA)為資料分析中常見的統計模型,主要為探討連續型(Continuous)資料型態之因变量(Dependent variable)與類別型資料型態之自变量(Independent variable)的關係,當自變項的因子中包含等於或超過三個類別情況下,檢定其各類別間平均數是否相等的統計模式,廣義上可將T檢定中變異數相等(Equality of variance)的合併T檢定(Pooled T-test)視為是變異數分析的一種,基於T檢定為分析兩組平均數是否相等,並且採用相同的計算概念,而實際上當變異數分析套用在合併T檢定的分析上時,產生的F值則會等於T檢定的平方項。 變異數分析依靠F-分布為機率分布的依據,利用平方和(Sum of square)與自由度(Degree of freedom)所計算的組間與組內均方(Mean of square)估計出F值,若有顯著差異則考量進行或稱多重比較(Multiple comparison),較常見的為、與Bonferroni correction,用於探討其各組之間的差異為何。 在變異數分析的基本運算概念下,依照所感興趣的因子數量而可分為單因子變異數分析、雙因子變異數分析、多因子變異數分析三大類,依照因子的特性不同而有三種型態,固定效應變異數分析(fixed-effect analysis of variance)、隨機效應變異數分析(random-effect analysis of variance)與混合效應變異數分析(Mixed-effect analaysis of variance),然而第三種型態在後期發展上被認為是Mixed model的分支,關於更進一步的探討可參考Mixed model的部份。 變異數分析優於兩組比較的T檢定之處,在於後者會導致多重比較(multiple comparisons)的問題而致使第一型錯誤(Type one error)的機會增高,因此比較多組平均數是否有差異則是變異數分析的主要命題。 在统计学中,方差分析(ANOVA)是一系列统计模型及其相关的过程总称,其中某一变量的方差可以分解为归属于不同变量来源的部分。其中最简单的方式中,方差分析的统计测试能够说明几组数据的平均值是否相等,因此得到两组的T檢定。在做多组双变量T檢定的时候,错误的機率会越来越大,特别是第一型錯誤,因此方差分析只在二到四组平均值的时候比较有效。.
政府
政府是一个政治体系,於某个區域訂立、執行法律和管理的一套机构。广义的政府包括立法机关、行政机关、司法机关、军事机关,狭义的政府仅指行政机关;在内阁制国家,“政府”一词也用來指代表国家最高行政机构的核心,即“内阁”。 政府也是一种权力分配的格局。不仅是司法权、立法权和行政权之间的关系,也是中央政府与地方政府之间的关系,甚至也包括了政府各部门单位之间以及公务员之间的权力分配。 政府是组成国家整体的一个幫派,政府隶属于国家。因此执政政府的倒台或政权的更替并不意味着国家的灭亡,而如果国家灭亡了,政府也就不可能存在。公民对于国家的合法性存在认同性高于对政府的认同性。 政府也是一种组织,区别于一般的社会组织,政府权力的取得必须具有合法性,同时具有强制性和权威性。权力只为权力来源负责,政府也不例外。如果政府的权力来源恰好是国民或公民,政府就对国民公民负责,为公共利益服务。 政府依照法律行使执法权,如果超出法律赋予的权限范围,就是“滥用职权”;如果没有完全行使执法权,就是“不作为”。两者都是政府的错误。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
数据挖掘
数据挖掘(data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的中发现模式的计算过程。数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。除了原始分析步骤,它还涉及到数据库和数据管理方面、、模型与推断方面考量、兴趣度度量、复杂度的考虑,以及发现结构、可视化及在线更新等后处理。数据挖掘是“資料庫知識發現”(KDD)的分析步骤。数据挖掘:实用机器学习技术及Java实现》一书大部分是机器学习的内容。这本书最初只叫做“实用机器学习”,“数据挖掘”一词是后来为了营销才加入的。通常情况下,使用更为正式的术语,(大规模)数据分析和分析学,或者指出实际的研究方法(例如人工智能和机器学习)会更准确一些。 数据挖掘的实际工作是对大规模数据进行自动或半自动的分析,以提取过去未知的有价值的潜在信息,例如数据的分组(通过聚类分析)、数据的异常记录(通过异常检测)和数据之间的关系(通过关联式规则挖掘)。这通常涉及到数据库技术,例如。这些潜在信息可通过对输入数据处理之后的总结来呈现,之后可以用于进一步分析,比如机器学习和预测分析。举个例子,进行数据挖掘操作时可能要把数据分成多组,然后可以使用决策支持系统以获得更加精确的预测结果。不过数据收集、数据预处理、结果解释和撰写报告都不算数据挖掘的步骤,但是它们确实属于“資料庫知識發現”(KDD)过程,只不过是一些额外的环节。 类似词语“”、“数据捕鱼”和“数据探测”指用数据挖掘方法来采样(可能)过小以致无法可靠地统计推断出所发现任何模式的有效性的更大总体数据集的部分。不过这些方法可以建立新的假设来检验更大数据总体。.
教育学
教育学是研究教育现象和教育问题,揭示教育规律的一门学科,是一门研究如何培养人的科学。.
拉丁语
拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.
時間序列
时间序列(time series)是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。时间序列广泛应用于数理统计、信号处理、模式识别、计量经济学、数学金融、天气预报、地震预测、脑电图、控制工程、航空学、通信工程以及绝大多数涉及到时间数据测量的应用科学与工程学。.
上面的列表回答下列问题
- 什么學科列表和统计学的共同点。
- 什么是學科列表和统计学之间的相似性
學科列表和统计学之间的比较
學科列表有841个关系,而统计学有81个。由于它们的共同之处20,杰卡德指数为2.17% = 20 / (841 + 81)。
参考
本文介绍學科列表和统计学之间的关系。要访问该信息提取每篇文章,请访问: