之间孪生素数和表兄弟素数相似
孪生素数和表兄弟素数有(在联盟百科)5共同点: 埃拉托斯特尼筛法,三胞胎素数,六素数,四胞胎素数,素数。
埃拉托斯特尼筛法
埃拉托斯特尼筛法(κόσκινον Ἐρατοσθένους,sieve of Eratosthenes ),簡稱--,也有人称素数筛。这是一種簡單且历史悠久的筛法,用來找出一定範圍內所有的質數。 所使用的原理是從2開始,將每個質數的各個倍數,標記成合數。一個質數的各個倍數,是一個差為此質數本身的等差數列。此為這個篩法和試除法不同的關鍵之處,後者是以質數來測試每個待測數能否被整除。 埃拉托斯特尼篩法是列出所有小質數最有效的方法之一,其名字來自於古希臘數學家埃拉托斯特尼,並且被描述在另一位古希臘數學家尼科馬庫斯所著的《算術入門》中。.
埃拉托斯特尼筛法和孪生素数 · 埃拉托斯特尼筛法和表兄弟素数 ·
三胞胎素数
在数论中,三胞胎素数(也称为三生素数)是一类由三个连续素数组成的数组。三胞胎素数的定义类似于孪生素数,它的名字也正是由此而来。.
六素数
在数学中,六素数(sexy prime)是相差为6的素数偶(p, p + 6)。例如数5和11都是素数且差为6。如果p + 2或p + 4也是素数,则六素数是素数三元组的一部分。 六素数的英文"sexy prime"源于拉丁语六:sex。.
四胞胎素数
四胞胎素数(四連素数)是指一組符合以下形式的素数。上述形式是大於3的四個連續素数出現機率最高的形式。頭幾組四胞胎素数如下,,,,,,,,,,, 上述四胞胎素数中除了以外的各組均符合的形式,各質數除以30的餘數有一定的規則。 有些參考資料將或也視為四胞胎素数,而有些來源的資料不將視為四胞胎素数。 四胞胎素数中有包括二組連續的孪生素数及二組互相重疊的三胞胎素数。 目前還不確定是否存在無限組四胞胎素数,若四胞胎素数有無限組,因為其中也包括孪生素数,也就可推得了孪生素数猜想。相反的,若孪生素数猜想不成立,也可以推得四胞胎素数只有有限組。不過根據现有的知識推測,孪生素数可能有無限組,但四胞胎素数可能只有有限組。n在2,3,4,...時,n位數十進位的四胞胎素数組數如下1, 3, 7, 26, 128, 733, 3869, 23620, 152141, 1028789, 7188960, 51672312, 381226246, 2873279651 。 至2007年為止,已知的最大四胞胎素数有2058位數。是由Norman Luhn在2005年發現,第一個質數為 p.
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
上面的列表回答下列问题
- 什么孪生素数和表兄弟素数的共同点。
- 什么是孪生素数和表兄弟素数之间的相似性
孪生素数和表兄弟素数之间的比较
孪生素数有66个关系,而表兄弟素数有47个。由于它们的共同之处5,杰卡德指数为4.42% = 5 / (66 + 47)。
参考
本文介绍孪生素数和表兄弟素数之间的关系。要访问该信息提取每篇文章,请访问: