我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

孔雀五和聯星

快捷方式: 差异相似杰卡德相似系数参考

孔雀五和聯星之间的区别

孔雀五 vs. 聯星

孔雀五(κ Pav/孔雀座κ)是一个在孔雀座的变星。它是全天最亮的室女座W型变星。. 聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.

之间孔雀五和聯星相似

孔雀五和聯星有(在联盟百科)3共同点: 视星等變星超巨星

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

孔雀五和视星等 · 聯星和视星等 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

孔雀五和變星 · 聯星和變星 · 查看更多 »

超巨星

超巨星是質量最大的恆星,在赫羅圖上占據著圖的頂端,在約克光譜分類中屬於Ia(非常亮的超巨星)或Ib(不很亮的超巨星),但最明亮的超巨星有時會被分類為0。 超巨星的質量是太陽的10至70倍,亮度則為太陽光度的30,000至數百萬倍,它們的半徑變化也很大,通常是太陽半徑的30至500倍,甚至超過1000倍太陽半徑。斯特凡-波茲曼定律顯示紅超巨星的表面,單位面積輻射的能量較低,因此相對於藍超巨星的溫度是較冷的,因此有相同亮度的紅超巨星會比藍超巨星更巨大。 因為她們的質量是如此的巨大,因此壽命只有短暫的一千萬至五千萬年,所以只存在於年輕的宇宙結構中,像是疏散星團、螺旋星系的漩渦臂,和不規則星系。她們在螺旋星系的核球中很罕見,也未曾在橢圓星系或球狀星團中被觀測到,因為這些天體都是由老年的恆星組成的。 超巨星的光譜佔據了所有的類型,從藍超巨星早期型的O型光譜,到紅超巨星晚期型的M型都有。參宿七,在獵戶座中最亮的恆星,是顆藍白色的超巨星,參宿四和天蝎座的心宿二則是紅超巨星。 超巨星模型的塑造依然是研究領域中活躍且有困難之處的區塊,例如恆星質量流失的問題就仍待解決。新的趨勢與研究方法則不只是要塑造一顆恆星的模型,而是要塑造整個星團的模型,並且藉以比較超巨星在其中的分布與變化,例如,像在星系麥哲倫雲中的分布狀態。 宇宙中的第一顆恆星,被認為是比存在於現在的宇宙中的恆星都要明亮與巨大的。這些恆星被認為是第三星族,她們的存在是解釋在類星體的觀測中,只有氫和氦這兩種元素的譜線所必須的。 大部分第二型超新星的前身被認為是紅超巨星,然而,超新星1987A的前身卻是藍超巨星。不過,在強大的恆星風將外面數層的氣體殼吹散前他可能是一顆紅超巨星。 目前所知最大的幾顆恆星,依據體積的大小排序如下:盾牌座UY、天鵝座NML、仙王座RW、WOH G64、仙后座PZ、維斯特盧1-26、人馬座VX、大犬座VY(the Garnet Star)。以上排名与亮度和重量无关。.

孔雀五和超巨星 · 聯星和超巨星 · 查看更多 »

上面的列表回答下列问题

孔雀五和聯星之间的比较

孔雀五有10个关系,而聯星有172个。由于它们的共同之处3,杰卡德指数为1.65% = 3 / (10 + 172)。

参考

本文介绍孔雀五和聯星之间的关系。要访问该信息提取每篇文章,请访问: