之间子群和群相似
子群和群有(在联盟百科)12共同点: 二元运算,当且仅当,凱萊表,因數,等价关系,群同構,群的生成集合,群论,階 (群論),阿贝尔群,陪集,拉格朗日定理 (群論)。
二元运算
二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
凱萊表
凱萊表,以19世紀英國數學家阿瑟·凱萊命名,通過在正方形表格中排列一個群的所有元素的所有可能乘積來描述有限群的結構,這讓人想起了加法或乘法表。群的很多性質,比如是否為阿貝爾群,哪個元素是哪個元素的逆元,和群的中心的大小和內容,都可以通過檢查它的凱萊表來輕易得出。 凱萊表的一個簡單例子是群 在普通的乘法下的表格: |- !style.
因數
因數是一個常見的數學名詞,又名「--」。.
等价关系
等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.
群同構
在抽象代數中,群同構是在兩個群之間的函數,它以關照到了群運算的方式架設了在群的元素之間的一一對應。如果兩個群之間存在一個同構,則這兩個群叫做同構的。從群論的立場看,同構的群有相同的性質而不要區分。.
群的生成集合
在抽象代數中,群 G 的生成集合是子集 S 使得所有 G 的所有元素都可以表達為 S 的元素和它們的逆元中的有限多個元素的乘積。 更一般的說,如果 S 是群 G 的子集,則 S 所生成的子群 是包含所有 S 的元素的 G 的最小子群,這意味著它是包含 S 元素的所有子群的交集;等價的說, 是可以用 S 的元素和它們的逆元中的有限多個元素的乘積表達的 G 的所有元素的子群。 如果 G.
群论
在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.
階 (群論)
在群論這一數學的分支裡,階這一詞被使用在兩個相關連的意義上:.
阿贝尔群
阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.
陪集
数学上,若G为群,H为其子群,而g为G中元素,则 仅当H为正规子群时,左右陪集相同,这也是子群正规性的一个定义。 陪集指某个G中子群的左或右陪集。因为Hg.
拉格朗日定理 (群論)
拉格朗日定理是群論的定理,利用陪集證明了子群的階一定是有限群的階的因數值。.
上面的列表回答下列问题
- 什么子群和群的共同点。
- 什么是子群和群之间的相似性
子群和群之间的比较
子群有21个关系,而群有222个。由于它们的共同之处12,杰卡德指数为4.94% = 12 / (21 + 222)。
参考
本文介绍子群和群之间的关系。要访问该信息提取每篇文章,请访问: