之间夸克星和白洞相似
夸克星和白洞有(在联盟百科)3共同点: 廣義相對論,黑洞,虫洞。
廣義相對論
广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.
黑洞
黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.
虫洞
蟲洞(wormhole),又稱愛因斯坦-羅森橋(Einstein—Rosen bridge),是宇宙中可能存在的连接两个不同时空的狭窄隧道。蟲洞是1916年奥地利物理学家路德维希·弗莱姆首次提出的概念,1930年代由爱因斯坦及納森·羅森在研究引力场方程时假设黑洞与白洞透过虫洞连接,认为透过虫洞可以做瞬时间的空间转移或者做时间旅行。迄今为止,科学家们还没有观察到虫洞存在的证据,一般认为这是由于很难和黑洞相区别。 為了與其他種類的蟲洞進行區分,例如量子態的量子虫洞及弦論上的虫洞,一般通俗所稱之「虫洞」應被稱為「時空洞」,量子態的量子虫洞一般被稱為「微型虫洞」,兩者有很大的區分。 黑洞有一個特性,就是會在另一邊得到所謂的「鏡射宇宙」。愛因斯坦並不重視這個解,因為我們根本不可能通行。於是連接兩個宇宙的「愛因斯坦—羅森橋」被認為只是個數學伎倆。 但是,在1963年時,紐西蘭的數學家羅伊·克爾的研究發現,假設任何崩潰的恆星都會旋轉,則形成黑洞時,將會成為動態黑洞;史瓦西的靜態黑洞並不是最佳的物理解法。然而,實際上恆星會變成扁平的結構,不會形成奇點。也就是說:重力場並非無限大。這使得我們得到了一個驚人的結論:如果我們將物體或太空船沿著旋轉黑洞的旋轉軸心發射進入,原則上,它可能可以熬過中心的重力場,並進入鏡射宇宙。如此一來,愛因斯坦—羅森橋就如同連接時空兩個區域的通道,也就是「蟲洞」。 理论上,虫洞是连结白洞和黑洞的多维空间隧道,是无处不在,但转瞬即逝的。不过有人假想一种奇异物质可以使虫洞保持张开。也有人假设如果存在一种叫做幻影物质(Phantom matter)的奇异物质的话,因为其同时具有负能量和负质量,因此能创造排斥效应以防止虫洞关闭。这种奇异物质会使光发生偏转,成为发现虫洞的訊号。但是这些理论存在过多未经测试的假设,很难令人信服。.
上面的列表回答下列问题
- 什么夸克星和白洞的共同点。
- 什么是夸克星和白洞之间的相似性
夸克星和白洞之间的比较
夸克星有98个关系,而白洞有10个。由于它们的共同之处3,杰卡德指数为2.78% = 3 / (98 + 10)。
参考
本文介绍夸克星和白洞之间的关系。要访问该信息提取每篇文章,请访问: