徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

太陽週期和电离层

快捷方式: 差异相似杰卡德相似系数参考

太陽週期和电离层之间的区别

太陽週期 vs. 电离层

太陽週期,或是太陽磁場活動週期是太陽的各種現象,包括太空天氣後面的動態引擎和能量來源。通過氫磁流體發電機的程序供給的能量,誘導太陽內部的流動,形成太陽週期。. 电离层是地球大气层被太阳射线电离的部分,它是地球磁层的内界。由于它影响到无线电波的传播,它有非常重要的实际意义。.

之间太陽週期和电离层相似

太陽週期和电离层有(在联盟百科)6共同点: 太阳风太阳活动宇宙線平流层紫外线耀斑

太阳风

太陽風(solar wind)特指由太阳上層大氣射出的超高速等离子体(带电粒子)流。非出自太陽的类似带电粒子流也常稱爲“恆星風”。 在太陽日冕层的高温(几百万開氏度)下,氢、氦等原子已经被電離成帶正電的质子、氦原子核和带负电的自由电子等。这些带电粒子运动速度极快,以致不断有带电的粒子挣脱太阳的引力束缚,射向太陽的外围,形成太陽風。 太陽風的速度一般在200-800km/s。 一般認為在太阳极小期,從太陽的磁場极地附近吹出的是高速太陽風,從太陽的磁场赤道附近吹出的是低速太陽風。太陽的磁場的活动是會變化的,週期大約為11年。 太陽風一词是在1950年代被尤金·派克提出。但是直到1960年代才證實了它的存在。長期觀測發現,當太陽存在冕洞時,地球附近就能觀測到高速的太陽風。因此天文学家認為高速太陽風的產生與冕洞有密切的關係。太阳表面的磁场及等离子体活动对地球有很重要的影响。当太阳发生强烈的活动时,大量的带电粒子随着太阳风吹向地球的两极,就会在两极的电离层引发美丽的极光。.

太阳风和太陽週期 · 太阳风和电离层 · 查看更多 »

太阳活动

太陽活動是太陽所發出太陽輻射的總量變化,以及數千年來的光譜分布變化。這些活動具有一些週期性,其中最主要的是長達11年的太陽週期(或稱太陽黑子週期)。不過這些變化也具有非週期性的波動。太陽活動的估計原本是透過計算太陽黑子數量,近幾十年來,已經改由人造衛星直接觀測。氣候變遷科學家想要了解太陽活動的變化,會對地球與地球氣候造成哪些影響。太陽活動對地球的影響被稱為"太陽驅動力"。 在衛星時代來臨前,總體太陽輻照度(TSI)的變動,雖然只是在紫外線的波長上有百分之幾的差異,但始終都在檢定的門檻之下。現在對總太陽輸出的測量變化(涵蓋最後這三個11年的太陽黑子週期)只有0.1%的差異 或是在11年黑子周期期間的峰頂對谷底大約是1.3 W/m²,而在地球大氣層上層表面接收到各式各樣太陽輻射的平均值為1,366W/ m²(每平方米1,366瓦)。沒有對較長期變異直接測量的代理測量變通的不同度量,以最近的結果建議在過去2,000年間的變動大約在0.1%,雖然其他來源的資料建議從1675年起的太陽輻照度增量為0.2% 。太陽變異和火山作用的組合可能是造成一些氣候變化的起因,像是蒙德極小期。 對2006年現有文獻的回顧,刊登在自然,確定自1970年代中期太陽亮度沒有淨增值,並且在過去400年中太陽輸出能量的變化不太可能造成全球性變暖的主要部份變化。然而,同一份報告的作者也警告說:"除了太陽的亮度之外,來自宇宙射線和紫外線輻射對氣候更微妙的影響不可能被排除。他們也補充說,因為物理模形認為這樣的作用不足以開發,使得這些影響尚未能被證實" 。.

太阳活动和太陽週期 · 太阳活动和电离层 · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

太陽週期和宇宙線 · 宇宙線和电离层 · 查看更多 »

平流层

平流層(Stratosphere),亦稱同溫層,位于对流层的上方和中间层的下方。其下界在中纬度地区位于距离地表10km处,在极地则在8km左右,其上界则约在离地50km的高度。平流层的温度上热下冷,随着高度的增加,平流层的气温在起初大致不变,然后迅速上升。在平流层里大气主要以水平方向流动,垂直方向上的运动较弱,因此气流平稳,幾乎没有上下对流。 由于含有大量臭氧,平流层的上半部分能吸收大量的紫外线,這層使特殊氣體形成的區域也被称为臭氧层。.

太陽週期和平流层 · 平流层和电离层 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

太陽週期和紫外线 · 电离层和紫外线 · 查看更多 »

耀斑

閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.

太陽週期和耀斑 · 电离层和耀斑 · 查看更多 »

上面的列表回答下列问题

太陽週期和电离层之间的比较

太陽週期有25个关系,而电离层有40个。由于它们的共同之处6,杰卡德指数为9.23% = 6 / (25 + 40)。

参考

本文介绍太陽週期和电离层之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »