之间太阳和电离层相似
太阳和电离层有(在联盟百科)11共同点: 太阳风,太阳黑子,太阳活动,宇宙線,公里,等离子体,紫外线,耀斑,X射线,极光,氧。
太阳风
太陽風(solar wind)特指由太阳上層大氣射出的超高速等离子体(带电粒子)流。非出自太陽的类似带电粒子流也常稱爲“恆星風”。 在太陽日冕层的高温(几百万開氏度)下,氢、氦等原子已经被電離成帶正電的质子、氦原子核和带负电的自由电子等。这些带电粒子运动速度极快,以致不断有带电的粒子挣脱太阳的引力束缚,射向太陽的外围,形成太陽風。 太陽風的速度一般在200-800km/s。 一般認為在太阳极小期,從太陽的磁場极地附近吹出的是高速太陽風,從太陽的磁场赤道附近吹出的是低速太陽風。太陽的磁場的活动是會變化的,週期大約為11年。 太陽風一词是在1950年代被尤金·派克提出。但是直到1960年代才證實了它的存在。長期觀測發現,當太陽存在冕洞時,地球附近就能觀測到高速的太陽風。因此天文学家認為高速太陽風的產生與冕洞有密切的關係。太阳表面的磁场及等离子体活动对地球有很重要的影响。当太阳发生强烈的活动时,大量的带电粒子随着太阳风吹向地球的两极,就会在两极的电离层引发美丽的极光。.
太阳黑子
太陽黑子是太陽光球上的臨時現象,它們在可見光下呈現比周圍區域黑暗的斑點。它們是由高密度的磁性活動抑制了對流的激烈活動造成的,在表面形成溫度降低的區域。雖然它們的溫度仍然大約有3000-4500K,但是與周圍5,780K的物質對比之下,使它們清楚的顯視為黑點,因為黑體(光球非常近似於黑體)的熱強度(I)與溫度(T)的四次方成正比。如果將黑子與周圍的光球隔離開來,黑子會比一個電弧更為明亮。當它們在太陽表面橫越移動時,會膨脹和收縮,直徑可以達到80,000公里,因此在地球上不用望遠鏡也可以直接看見。 激烈的磁場活動顯示,太陽黑子會導致次一級的活動,像是冕圈和再聯結事件。大多數的閃焰和日冕物質拋射都起源於可見到黑子群存在的磁場活動區域。相似的現象也在一些有著星斑的恆星上被直接觀測到, K. G. Strassmeier, 1999-06-10, University of Vienna, "starspots vary on the same (short)time scales as Sunspots do", "HD 12545 had a warm spot(350 K above photospheric temperature; the white area in the picture)"。 太阳黑子很少单独活动,常是成群出现。黑子的活动周期为11.2年,活躍時会对地球的磁场產生影響,主要是使地球南北极和赤道的大气环流作经向流动,从而造成恶劣天气,使气候转冷。嚴重時會對各类电子产品和电器造成损害。 Image:Sunspots 1302 Sep 2011 by NASA.jpg|2011年9月的太陽黑子。 Image:Sun projection with spotting-scope.jpg|2004年6月22日的太陽黑子影像。 Solar eclipse of October 23 2014 start of partial.jpg|2014年10月23日日食中的2192號太陽黑子 Image:Sunspot 1112.jpg|2010年10月在不同黑子上方的看見的日冕構造。.
太阳活动
太陽活動是太陽所發出太陽輻射的總量變化,以及數千年來的光譜分布變化。這些活動具有一些週期性,其中最主要的是長達11年的太陽週期(或稱太陽黑子週期)。不過這些變化也具有非週期性的波動。太陽活動的估計原本是透過計算太陽黑子數量,近幾十年來,已經改由人造衛星直接觀測。氣候變遷科學家想要了解太陽活動的變化,會對地球與地球氣候造成哪些影響。太陽活動對地球的影響被稱為"太陽驅動力"。 在衛星時代來臨前,總體太陽輻照度(TSI)的變動,雖然只是在紫外線的波長上有百分之幾的差異,但始終都在檢定的門檻之下。現在對總太陽輸出的測量變化(涵蓋最後這三個11年的太陽黑子週期)只有0.1%的差異 或是在11年黑子周期期間的峰頂對谷底大約是1.3 W/m²,而在地球大氣層上層表面接收到各式各樣太陽輻射的平均值為1,366W/ m²(每平方米1,366瓦)。沒有對較長期變異直接測量的代理測量變通的不同度量,以最近的結果建議在過去2,000年間的變動大約在0.1%,雖然其他來源的資料建議從1675年起的太陽輻照度增量為0.2% 。太陽變異和火山作用的組合可能是造成一些氣候變化的起因,像是蒙德極小期。 對2006年現有文獻的回顧,刊登在自然,確定自1970年代中期太陽亮度沒有淨增值,並且在過去400年中太陽輸出能量的變化不太可能造成全球性變暖的主要部份變化。然而,同一份報告的作者也警告說:"除了太陽的亮度之外,來自宇宙射線和紫外線輻射對氣候更微妙的影響不可能被排除。他們也補充說,因為物理模形認為這樣的作用不足以開發,使得這些影響尚未能被證實" 。.
宇宙線
宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.
公里
--亦稱--( → kilometre、),是一种長度計量單位,等於一千米,是國際單位制之一,符號为km。.
等离子体
--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.
紫外线
紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.
耀斑
閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.
X射线
--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.
极光
極光(Aurora)是在高緯度(北極和南極)的天空中,帶電的高能粒子和高層大氣(熱層)中的原子碰撞造成的發光現象。帶電粒子來自磁層和太陽風,在地球上,它們被地球的磁場帶進大氣層。大多數的極光發生在所謂的“極光帶”,在觀察上,這是在所有的經度上距離地磁極10°至20°,緯度寬約3°至6°的帶狀區域。太陽風受到地球的磁場導引直接進入大氣層。當磁暴發生時,在較低的緯度也會出現極光。极光不只在地球上出现,太阳系内的其他一些具有磁场的行星上也有极光。 在英、法等许多西方语言中,人们遵照伽利略的习惯,直接用奥罗拉(Aurora)女神的名字来称呼极光现象。.
氧
氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.
上面的列表回答下列问题
- 什么太阳和电离层的共同点。
- 什么是太阳和电离层之间的相似性
太阳和电离层之间的比较
太阳有369个关系,而电离层有40个。由于它们的共同之处11,杰卡德指数为2.69% = 11 / (369 + 40)。
参考
本文介绍太阳和电离层之间的关系。要访问该信息提取每篇文章,请访问: