之间太初核合成和超新星核合成相似
太初核合成和超新星核合成有(在联盟百科)5共同点: 原子量,中子,質子,恆星核合成,核聚变。
原子量
原子量(atomic mass),也称原子质量或相对原子质量,符号ma,是指單一原子的質量,其單位為原子质量单位(符號u或Da,以往曾用amu) ,定義為一个碳12原子靜止質量的。原子質量以質子和中子的質量為主,元素的原子量几近等于其質量數。 若將原子量除以原子质量单位,會得到一個無因次量,這個無因次量稱為「相對同位素質量」(relative isotopic mass)。因此碳12的原子量是12u或是12 Da,而一個碳12原子的相對同位素質量就是12。.
原子量和太初核合成 · 原子量和超新星核合成 ·
中子
| magnetic_moment.
質子
|magnetic_moment.
恆星核合成
恆星核合成 是解釋重元素是由恆星內部的原子經由核融合創造出來的化學元素理論。自從大爆炸期間產生氫、氦、鋰之後,恆星核合成就一直持續地創造重元素。這原本是一個高度預測的理論,但經由觀測到的元素豐度和計算的基礎上,已經有了良好的協定。它解釋了宇宙中元素的豐度為何會隨著時間而增長,以及為什麼某些元素及其同位素會比其它的元素更豐富。這個理論最初是由弗雷德霍伊爾(Fred Hoyle)in在1946年提出,然後在1954年精煉 。進一步的發展,特別是對重元素中比鐵重的元素經由中子捕獲的核合成,在霍伊爾和伯比奇夫婦(傑佛瑞·伯比奇和瑪格麗特·伯比奇)、威廉·福勒四人於1957年提出了著名的元素合成理論(即著名的B2FH論文) ,成為天文物理學史上最受人引用的論文之一。 恆星演化是因它們的組成(元素的豐度)在生命歷程中的改變。首先是氫燃燒(主序星),然後是氦燃燒(紅巨星),並逐漸燃燒更重的元素。然而,因為這些重元素都包含在恆星內部,這本身並沒有明顯的改變宇宙中元素的豐度。在它們生命的後期,低質量的恆星將通過恆星風慢慢地彈出它們的大氣層,形成行星狀星雲;而質量更高的恆星將通過超新星的突發性災難事件來噴發質量。超新星核合成這個名詞被用來描述大質量恆星(12-35倍太陽質量)在演化和爆炸前所創造的元素。這些大質量恆星從碳()到鎳()的各種新同位素的最主要來源。 進一步的燃燒序列是由重力坍縮和其相應的加熱驅動的,導致重元素的碳、氧和矽燃燒。然而,大多數原子量範圍在 (從矽到鎳)核合成的重元素都是由恆星上層崩潰到核心,造成一個壓縮衝擊波反彈向外形成的。短暫的衝擊波升高了大約50%的溫度,從而引起了大約1秒鐘的劇烈燃燒。在大質量恆星最後的燃燒稱為超新星核合成或是"爆炸核合成",是恆星產生重元素的最後一個時期。 促進核合成理論發展的因素是發現宇宙中化學元素的豐度。對具體描述的需要已經受到太陽系化學同位素相對豐度的啟發。當繪製在以元素的原子數為函數的圖表上時,這些豐度有一個參差不齊的鋸齒狀形狀,而變化的因素數以萬計(參見核合成#歷史)。這表明這個自然的過程不是隨機的。第二個啟發是在20世紀了解恆星的核合成發生過程,它被認識到太陽的長壽,和從核融合反應釋放出來的能量是光與熱的來源 。.
核聚变
--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.
太初核合成和核聚变 · 核聚变和超新星核合成 ·
上面的列表回答下列问题
- 什么太初核合成和超新星核合成的共同点。
- 什么是太初核合成和超新星核合成之间的相似性
太初核合成和超新星核合成之间的比较
太初核合成有33个关系,而超新星核合成有43个。由于它们的共同之处5,杰卡德指数为6.58% = 5 / (33 + 43)。
参考
本文介绍太初核合成和超新星核合成之间的关系。要访问该信息提取每篇文章,请访问: