我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

天王星大氣層和紅外線太空天文台

快捷方式: 差异相似杰卡德相似系数参考

天王星大氣層和紅外線太空天文台之间的区别

天王星大氣層 vs. 紅外線太空天文台

天王星的大氣層雖然還是以氫和氦為主要的成分,但與海王星相似,而不同於較大的氣體巨星木星和土星,它擁有的揮發性物質(類似於"冰"),像是水、氨和甲烷的比例較高。不同於木星和土星,天王星上層的大氣層之下被認為沒有金屬氫。取而代之的是,在內部應該是由氨、水和甲烷組成的"海洋",逐漸的轉換成以氫和氦為主的大氣層並混合在一起,而沒有很清楚的界線。由於這樣的差異,許多天文學家認為天王星和海王星應該自成一族,稱為冰巨星,以與木星和土星有所區別。 雖然沒有明確的定義天王星內部是否有固體的表面,天王星最外層被稱為大氣層的氣體部分,是很容易使用遙感設備偵測的。遙感設備能偵測到一帕氣壓之下300公里左右的深度,該處的氣壓大約是100 帕,溫度約為320K。纖細的行星環從大氣層延伸至2倍行星半徑之處,此處的行星半徑是以一大氣壓之處做為行星有名無實的表面。天王星的大氣可以區分為三層:高度從−300至 50 公里,氣壓從100至0.1帕的對流層;高度從50至4000 公里,氣壓在的平流層;以及從4000公里以上至距離表面高達50,000公里的增溫層;沒有散逸層。. 紅外線太空天文台 (ISO)是歐洲太空總署(ESA)設計在紅外線波段工作的太空望遠鏡,共同合作的單位還有美国国家航空航天局與日本宇宙科学研究所(研究所在2003年并入日本宇宙航空研究開發機構)。ISO 的觀察波段從2.5~240微米的紅外線。 計劃開始於1979年,於1995年11月發射升空,一直工作到所攜帶的氦在1998年5月耗盡為止,比預期多工作了8個月之久。.

之间天王星大氣層和紅外線太空天文台相似

天王星大氣層和紅外線太空天文台有(在联盟百科)2共同点: 红外线

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

天王星大氣層和红外线 · 紅外線太空天文台和红外线 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

天王星大氣層和氦 · 氦和紅外線太空天文台 · 查看更多 »

上面的列表回答下列问题

天王星大氣層和紅外線太空天文台之间的比较

天王星大氣層有55个关系,而紅外線太空天文台有7个。由于它们的共同之处2,杰卡德指数为3.23% = 2 / (55 + 7)。

参考

本文介绍天王星大氣層和紅外線太空天文台之间的关系。要访问该信息提取每篇文章,请访问: