我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

天文學和秒差距

快捷方式: 差异相似杰卡德相似系数参考

天文學和秒差距之间的区别

天文學 vs. 秒差距

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation). 差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.

之间天文學和秒差距相似

天文學和秒差距有(在联盟百科)14共同点: 大尺度纖維狀結構天体物理学天體天文学家太阳系太陽夜空地球國際天文聯會类星体视差银河系恒星星系

大尺度纖維狀結構

纖維狀結構是宇宙中目前已知的最大结构,一个典型的纖維結構的长度是70至150百万秒差距,这些纖維狀結構组成了宇宙中空洞的边界。纖維狀結構由星系构成,其中的一些星系又因为和其他众多星系组合的特别紧密而形成了超星系团。 在2006年7月,日本科學家宣布發現了由三條纖維狀結構組合的人類所知最大的結構,組成的星系密集得像一滴巨大的萊曼α斑點。日本国立天文台宣布,由日本东北大学、京都大学和国立天文台组成的研究小组利用位于夏威夷莫纳克亚山顶峰上的“昴”望远镜(Subaru)的大视角主焦点照相机,对距地球约120亿光年宇宙中星系密集的区域附近进行观察,发现这片区域是一个大尺度结构的一部分,这个大尺度结构最宽处约2亿光年,比此前所知的最大超星系团还要巨大,其中的星系密度比宇宙平均星系密度高3-4倍。目前已知的星系高密度区域只有0.5亿光年的规模。研究小组利用微光天体分光装置对大尺度结构内的星系进行了详细的立体观测,发现这一大尺度结构由三条纖維狀結構相互交错构成,在这一星系密集区域纖維构造的连接点,有两个已知的巨大气体天体,其中有一个的直径约为40万光年。研究小组利用“昴”望远镜沿着纖維构造,又发现了33个10万光年规模以上的新的巨大气体天体,这些天体有着巨大质量。.

大尺度纖維狀結構和天文學 · 大尺度纖維狀結構和秒差距 · 查看更多 »

天体物理学

天體物理學,又稱「天文物理學」,是研究宇宙的物理學,這包括星體的物理性質(光度,密度,溫度,化學成分等等)和星體與星體彼此之間的交互作用。應用物理理論與方法,天體物理學探討恆星結構、恆星演化、太陽系的起源和許多跟宇宙學相關的問題。由於天體物理學是一門很廣泛的學問,天文物理學家通常應用很多不同的學術領域,包括力學、電磁學、統計力學、量子力學、相對論、粒子物理學等等。由於近代跨學科的發展,與化學、生物、歷史、計算機、工程、古生物學、考古學、氣象學等學科的混合,天體物理學目前大小分支大約三百到五百門主要專業分支,成為物理學當中最前沿的龐大領導學科,是引領近代科學及科技重大發展的前導科學,同時也是歷史最悠久的古老傳統科學。 天體物理實驗數據大多數是依賴觀測電磁輻射獲得。比較冷的星體,像星際物質或星際雲會發射無線電波。大爆炸後,經過紅移,遺留下來的微波,稱為宇宙微波背景輻射。研究這些微波需要非常大的無線電望遠鏡。 太空探索大大地擴展了天文學的疆界。太空中的觀測可讓觀測結果避免受到地球大氣層的干擾,科學家常透過使用人造衛星在地球大氣層外進行紅外線、紫外線、伽瑪射線和X射線天文學等電磁波波段的觀測實驗,以獲得更佳的觀測結果。 光學天文學通常使用加裝電荷耦合元件和光譜儀的望遠鏡來做觀測。由於大氣層的擾動會干涉觀測數據的品質,故於地球上的觀測儀器通常必須配備調適光學系統,或改由大氣層外的太空望遠鏡來觀測,才能得到最優良的影像。在這頻域裏,恆星的可見度非常高。藉著觀測化學頻譜,可以分析恆星、星系和星雲的化學成份。 理論天體物理學家的工具包括分析模型和計算機模擬。天文過程的分析模型時常能使學者更深刻地理解箇中奧妙;計算機模擬可以顯現出一些非常複雜的現象或效應其背後的機制。 大爆炸模型的兩個理論棟樑是廣義相對論和宇宙學原理。由於太初核合成理論的成功和宇宙微波背景輻射實驗證實,科學家確定大爆炸模型是正確無誤。最近,學者又創立了ΛCDM模型來解釋宇宙的演化,這模型涵蓋了宇宙暴胀(cosmic inflation)、暗能量、暗物質等等概念。 理論天體物理學家及實測天體物理學家分別扮演這門學科當中的兩大主力研究者,兩者專業分工。理論天體物理學家通常扮演大膽假設的研究者,理論不斷推陳出新,對於數據的驗證關心程度較低,假設程度太高時,經常會演變成偽科學,一般都是天體物理學研究者當中的激進人士。實測天體物理學家通常本身精通理論天體物理,在相當程度上來說也有能力自行發展理論,扮演小心求證的研究者,通常是物理實證主義的奉行者,只相信觀測數據,經常對理論天體物理學所提出的假說進行證偽或證實的活動,一般都是天體物理學研究者當中的保守人士。.

天体物理学和天文學 · 天体物理学和秒差距 · 查看更多 »

天體

天體(astronomical object,也稱為celestial object)是在可觀測宇宙中,經由科學確認其存在的物體、或是結構。 天體可能像恆星、行星、彗星等結合較緊密的星體或類星體,也可能是指一個複雜的,彼此關聯較鬆散的結構,如星團、星系,其中可能包括許多其他的星體,甚至有其他更小的結構。 天體的例子包括行星系、星团、星云及星系,而小行星、 月球、行星、恒星等則算是星體或類星體。彗星若只考慮其以冰和灰塵組成的彗核,是一個類星體,但若考慮彗核及其彗髮、彗髮,則是一個關聯較鬆散的天體。.

天文學和天體 · 天體和秒差距 · 查看更多 »

天文学家

天文学家是研究天文学、宇宙学、天体物理学等相关学科的科学家。因为有些哲学家、物理学家、数学家对天文理论有着不可忽视的影响,所以下面的列表中也包括这些人。.

天文学家和天文學 · 天文学家和秒差距 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

天文學和太阳系 · 太阳系和秒差距 · 查看更多 »

太陽

#重定向 太阳.

天文學和太陽 · 太陽和秒差距 · 查看更多 »

夜空

夜空通常是用來形容在夜晚看見的天空的一個專用術語。這個名詞常與天文學中的天體,像是恆星、月球和行星,這些在日沒之後就能在夜晚晴朗的天空中看見的天體聯結在一起。 夜空和對它的研究,從古至今都是歷史和文化的一部分。在過去,例如,農民就以夜空的狀態當日曆,來決定植物種植的時間。許多文化也將天空中的星座和亮星圖繪與神、神話和傳說等聯結在一起。 占星術在古代的發展相信通常是基於天體對地球上事物的影響和所傳遞的訊息。對夜空和天體的科學性研究和觀察,同時也使天文學成為一門科學。 夜空中天體的可見性受到光汙染的影響。在歷史上,夜空中的月球會增加環境的照明而妨礙天文觀測。然而,隨著人工光源增加所造成的光汙染,已使得觀察天空的問題日趨嚴重。特殊的濾色片和對燈具的改善有助於舒緩這方面的問題,但是無論對專業或業餘的光學天文學家,最好的觀測地點還是位於遠離城市的地區。.

夜空和天文學 · 夜空和秒差距 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

地球和天文學 · 地球和秒差距 · 查看更多 »

國際天文聯會

國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.

國際天文聯會和天文學 · 國際天文聯會和秒差距 · 查看更多 »

类星体

類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.

天文學和类星体 · 秒差距和类星体 · 查看更多 »

视差

視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。 从目标看两个点之间的夹角,叫做这两个点的视差角,两点之间的距离称作基线。 天文學家使用視差的原理測量天體的距离,包括月球、太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。 一些光學儀器,像是雙筒望遠鏡、顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。 一個簡單的,日常都能見到的視差例子是,汽車儀表板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。.

天文學和视差 · 秒差距和视差 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

天文學和银河系 · 秒差距和银河系 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

天文學和恒星 · 恒星和秒差距 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

天文學和星系 · 星系和秒差距 · 查看更多 »

上面的列表回答下列问题

天文學和秒差距之间的比较

天文學有260个关系,而秒差距有41个。由于它们的共同之处14,杰卡德指数为4.65% = 14 / (260 + 41)。

参考

本文介绍天文學和秒差距之间的关系。要访问该信息提取每篇文章,请访问: