徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

天文學和奥尔特云

快捷方式: 差异相似杰卡德相似系数参考

天文學和奥尔特云之间的区别

天文學 vs. 奥尔特云

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation). 奧爾特雲,又稱奧匹克-奧爾特雲,在理論上是一個圍繞太陽、主要由冰微行星組成的球體雲團。奧爾特雲位於星際空間之中,距離太陽最遠至10萬天文單位(約2光年)左右,也就是太陽和比鄰星距離的一半。同樣由海王星外天體組成的凱伯帶和離散盤與太陽的距離不到奧爾特雲的千分之一。奧爾特雲的外邊緣標誌著太陽系結構上的邊緣,也是太陽引力影響範圍的邊緣。 奧爾特雲由2個部份組成:一個球形外層和一個盤形內層,後者又稱希爾斯雲(Hills cloud)。奧爾特雲天體的主要成份為水冰、氨和甲烷等固體揮發物。 天文學家猜測,組成奧爾特雲的物質最早位於距太陽更近的地方,在太陽系形成早期因木星和土星的引力作用而分散到今天較遠的位置。目前對奧爾特雲沒有直接的觀測證據,但科學家仍然認為它是所有長週期彗星、進入內太陽系的哈雷類彗星、半人馬小行星及木星族彗星的發源之地。奧爾特雲外層受太陽系的引力牽制較弱,因此很容易受到臨近恒星和整個銀河系的引力影響。這些擾動都會不時導致奧爾特雲天體離開原有軌道,進入內太陽系,並成為彗星。根據軌道推算,大部份短週期彗星都可能來自於離散盤,其餘的仍有可能來自奧爾特雲。.

之间天文學和奥尔特云相似

天文學和奥尔特云有(在联盟百科)21共同点: 原行星盤同位素天文与天体物理学报天文物理期刊太阳系太陽小行星廣域紅外線巡天探測衛星土星國際天文聯會分子雲美国国家航空航天局疏散星团视差视星等银河系暗物质柯伊伯带潮汐力木星海王星

原行星盤

原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.

原行星盤和天文學 · 原行星盤和奥尔特云 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

同位素和天文學 · 同位素和奥尔特云 · 查看更多 »

天文与天体物理学报

天文与天体物理学报(英文:Astronomy and Astrophysics)是一家欧洲的纸质学术期刊,领域为理论、观测以及仪器方面的天文学和天体物理学研究。.

天文与天体物理学报和天文學 · 天文与天体物理学报和奥尔特云 · 查看更多 »

天文物理期刊

天文物理期刊(The Astrophysical Journal)是在天文学及天体物理学領域重要的研究期刊,于1895年創刊,至2008年底都由美國芝加哥大學出版社發行;2009年1月起改由英國物理學會出版社發行。編輯部附屬美國天文學會之下,每月出版三冊,刊載的內容主要為最新的天文物理發展、發現、及学说。.

天文學和天文物理期刊 · 天文物理期刊和奥尔特云 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

天文學和太阳系 · 太阳系和奥尔特云 · 查看更多 »

太陽

#重定向 太阳.

天文學和太陽 · 太陽和奥尔特云 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

天文學和小行星 · 奥尔特云和小行星 · 查看更多 »

廣域紅外線巡天探測衛星

廣域紅外線巡天探測衛星(Wide-field Infrared Survey Explorer, WISE)是NASA的紅外線空間望遠鏡,於2009年12月14日發射。WISE搭載口徑40公分的紅外線望遠鏡,以3至25微米的波長,六個月的時間進行巡天。WISE的紅外線偵測器比之前的紅外線巡天太空望遠鏡,如IRAS、AKARI、COBE靈敏一千倍以上。一般預期WISE一天可以發現數十顆小行星。 WISE預定將拍攝全天99%的影像,且同一區域影像至少將拍攝八幅以增加精確度。WISE將位於526公里高的太陽同步軌道並至少運行10個月。預估WISE將拍攝約150萬幅影像,平均每11秒拍攝1幅。每幅影像的視野是47角分。每個區域將被觀測過至少10次。WISE的影像將拍攝太陽系、銀河系以及宇宙深處的影像。在這些影像中將可增進我們對小行星、棕矮星和主要輻射紅外線的星系的認識。 WISE同時也是用來取代1999年3月發射失敗的廣角紅外線探測器。 2010年10月WISE的制冷劑用完,NASA Planetary division 出資進行不使用制冷劑的搜尋近地天體延伸任務,NEOWISE(Near-Earth Object WISE)。.

天文學和廣域紅外線巡天探測衛星 · 奥尔特云和廣域紅外線巡天探測衛星 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

土星和天文學 · 土星和奥尔特云 · 查看更多 »

國際天文聯會

國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.

國際天文聯會和天文學 · 國際天文聯會和奥尔特云 · 查看更多 »

分子雲

分子雲(Molecular cloud 或 Stellar nursery)是星際雲的一種,主要是由氣體和固態微塵所組成。其規模沒有一定的範圍,直徑最大可超過100光年,總質量可達太陽的 106 倍。 氫分子(H2)是分子雲中最普遍的組成物質之一。根據估計,每 1cm3 的分子雲內大約有 104 個氫分子;而在物質較密集的區域(如分子雲的核心),1cm3 內的氫分子則約有 105 個。除了氫以外,分子雲內亦有不少經由核融合合成出的元素。這些元素是多數恆星的主要組成物質,因此分子雲同時也是恆星——甚至是行星系的誕生場所,如太陽系就是其一。 氫分子很難被直接偵測到。通常是利用一氧化碳(CO)偵測氫分子。一氧化碳輻射的光度與分子氫質量的比例幾乎是常數。不過在對其他星系的觀測中有理由懷疑這樣的假設。.

分子雲和天文學 · 分子雲和奥尔特云 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

天文學和美国国家航空航天局 · 奥尔特云和美国国家航空航天局 · 查看更多 »

疏散星团

疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.

天文學和疏散星团 · 奥尔特云和疏散星团 · 查看更多 »

视差

視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。 从目标看两个点之间的夹角,叫做这两个点的视差角,两点之间的距离称作基线。 天文學家使用視差的原理測量天體的距离,包括月球、太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。 一些光學儀器,像是雙筒望遠鏡、顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。 一個簡單的,日常都能見到的視差例子是,汽車儀表板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。.

天文學和视差 · 奥尔特云和视差 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

天文學和视星等 · 奥尔特云和视星等 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

天文學和银河系 · 奥尔特云和银河系 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

天文學和暗物质 · 奥尔特云和暗物质 · 查看更多 »

柯伊伯带

柯伊伯带(Kuiper belt),又稱作倫納德-柯伊伯带,另譯庫柏帶、--,是位於太陽系中海王星軌道(距離太陽約30天文单位)外側的黃道面附近、天體密集的圓盤狀區域。柯伊伯带的假說最先由美国天文學家弗雷德里克·倫納德提出,十几年後杰拉德·柯伊伯證實了该观点。柯伊伯帶类似于小行星带,但大得多,它比小行星帶宽20倍且重20至200倍。如同主小行星帶,它主要包含小天体或太阳系形成的遗迹。虽然大多数小行星主要是岩石和金属构成的,但大部分柯伊伯带天体在很大程度上由冷冻的挥发成分(称为“冰”),如甲烷,氨和水组成。柯伊伯带至少有三顆矮行星:冥王星,妊神星和鸟神星。一些太阳系中的衛星,如海王星的海卫一和土星的土卫九,也被认为起源于该区域。 柯伊伯带的位置處於距離太陽40至50天文单位低傾角的軌道上。該處過去一直被認為空無一物,是太陽系的盡頭所在。但事實上這裡滿佈着直徑從數公里到上千公里的冰封微行星。柯伊伯带的起源和確實結構尚未明確,目前的理論推測是其來源於太陽原行星盤上的碎片,這些碎片相互吸引碰撞,但最後只組成了微行星帶而非行星,太陽風和物質會在在此處減速。 柯伊伯带有时被误认为是太陽系的邊界,但太阳系还包括向外延伸两光年之远的奥尔特星云。柯伊伯带是短周期彗星的來源地,如哈雷彗星。自冥王星被發現以來,就有天文學家認為其應該被排除在太陽系的行星之外。由於冥王星的大小和柯伊伯带內大的小行星大小相近,20世紀末更有主張該其應被歸入柯伊伯带小行星的行列当中;而冥王星的卫星则應被當作是其伴星。2006年8月,国际天文学联合会將冥王星剔出行星類別,并和谷神星与新发现的阋神星一起归入新分类的矮行星。 柯伊伯带不应该与假设的奥尔特云相混淆,后者比前者遥远一千倍以上。柯伊伯带内的天体,连同离散盘的成员和任何潜在的奥尔特云天体被统称为海王星外天体(TNOs)。冥王星是在柯伊伯带中最大的天體,而第二大知名的海王星外天体,則是在离散盘的阋神星。.

天文學和柯伊伯带 · 奥尔特云和柯伊伯带 · 查看更多 »

潮汐力

潮汐力或引潮力是萬有引力的效果,它使得潮汐發生。它源於在一個星體的直徑上各點的引力場不相等。 當一個天體甲受到天體乙的引力的影響,力場在甲面對乙跟背向乙的表面的作用,有很大差異。這使得甲出現很大應變,甚至會化成碎片(參見洛希極限)。除非引力場完全相等,否則這些應變還是會出現。 潮汐力會改變天體的形狀而不改變其體積。地球的每部分都受到月球的引力影響而加速,在地球的觀察者因此看到海洋內的水不斷重新分布。 當天體受潮汐力而自轉,內部摩擦力會令其旋轉動能化為內能,內能繼而轉成熱。若天體相當接近系統內質量最大的天體,自轉的天體便會以同一面朝質量最大的天體公轉,即潮汐鎖定,例如月球和地球。.

天文學和潮汐力 · 奥尔特云和潮汐力 · 查看更多 »

木星

|G1.

天文學和木星 · 奥尔特云和木星 · 查看更多 »

海王星

海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.

天文學和海王星 · 奥尔特云和海王星 · 查看更多 »

上面的列表回答下列问题

天文學和奥尔特云之间的比较

天文學有260个关系,而奥尔特云有88个。由于它们的共同之处21,杰卡德指数为6.03% = 21 / (260 + 88)。

参考

本文介绍天文學和奥尔特云之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »