我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

多項式和常數函數

快捷方式: 差异相似杰卡德相似系数参考

多項式和常數函數之间的区别

多項式 vs. 常數函數

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。. 在数学中,常数函数(也称常值函数)是指值不发生改变(即是常数)的函数。例如,我们有函数f(x).

之间多項式和常數函數相似

多項式和常數函數有(在联盟百科)4共同点: 实数导数常数變數

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

多項式和实数 · 实数和常數函數 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

多項式和导数 · 导数和常數函數 · 查看更多 »

常数

常数又稱定數,是指一个数值固定不变的常量,例如圆周率\pi\,、自然对数的底e,与之相反的是變數。 在物理學上,很多經測量得出的數值都被稱為常數。例如萬有引力常數和地表重力加速度等。但有研究表明,部分這類常数并不是恒定不变的,因此就被稱作“不定常数”(inconstant constant)和“不恒定的常数”(not-so-constant constant)。.

多項式和常数 · 常数和常數函數 · 查看更多 »

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

多項式和變數 · 常數函數和變數 · 查看更多 »

上面的列表回答下列问题

多項式和常數函數之间的比较

多項式有34个关系,而常數函數有23个。由于它们的共同之处4,杰卡德指数为7.02% = 4 / (34 + 23)。

参考

本文介绍多項式和常數函數之间的关系。要访问该信息提取每篇文章,请访问: