之间多面体和阿基米德立體相似
多面体和阿基米德立體有(在联盟百科)4共同点: 半正多面體,卡塔蘭立體,顶点,正多面體。
半正多面體
半正多面體是泛指所有由超過一種正多邊形所組成的多面體,並且要有對稱群,根據托羅爾德戈塞特的1900定義半正多面體有下面幾種:.
卡塔蘭立體
卡塔蘭立體是半正多面體的對偶多面體,都是凸多面體。1865年比利時數學家歐仁·查理·卡塔蘭最先描述它們。 卡塔蘭立體面可遞而點不可遞,而其對偶多面體半正多面體點可遞而面不可遞。只有兩個邊可遞的卡塔蘭立體:菱形十二面體和菱形三十面體。 所有多面體中只有有13種是卡塔蘭立體,其對偶多面體均為阿基米德立體(半正多面體)。.
顶点
顶点是数学和计算机科学等领域的术语,在不同的环境中有不同的意义。 在平面几何学中,顶点是指多边形两条边相交的地方,或指角的两条边的公共端点。 在立体几何学中,顶点是指在多面体中三个了了或更多的面连接的地方。 在图论中,顶点(vertex,node)可以理解为一个事物(object),而一张图则是由顶点的集合和顶点之间的连接构成的。 在计算机绘图中,顶点是空间中的一个点,一般由它的坐标表示。两个点可以确定一条直线,三个点可以确定一个平面。 在粒子物理学中,頂點是指粒子發生相互作用的點,例如LHC中兩粒子對撞產生反應的那個點就是頂點。.
正多面體
正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.
多面体和正多面體 · 正多面體和阿基米德立體 ·
上面的列表回答下列问题
- 什么多面体和阿基米德立體的共同点。
- 什么是多面体和阿基米德立體之间的相似性
多面体和阿基米德立體之间的比较
多面体有34个关系,而阿基米德立體有25个。由于它们的共同之处4,杰卡德指数为6.78% = 4 / (34 + 25)。
参考
本文介绍多面体和阿基米德立體之间的关系。要访问该信息提取每篇文章,请访问: