之间多面体和正十二面體相似
多面体和正十二面體有(在联盟百科)4共同点: 卡塔蘭立體,立方體,正多面體,星形正多面體。
卡塔蘭立體
卡塔蘭立體是半正多面體的對偶多面體,都是凸多面體。1865年比利時數學家歐仁·查理·卡塔蘭最先描述它們。 卡塔蘭立體面可遞而點不可遞,而其對偶多面體半正多面體點可遞而面不可遞。只有兩個邊可遞的卡塔蘭立體:菱形十二面體和菱形三十面體。 所有多面體中只有有13種是卡塔蘭立體,其對偶多面體均為阿基米德立體(半正多面體)。.
卡塔蘭立體和多面体 · 卡塔蘭立體和正十二面體 ·
立方體
立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.
正多面體
正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.
多面体和正多面體 · 正十二面體和正多面體 ·
星形正多面體
星型正多面體(Kepler-Poinsot多面體)是一類凹多面體,共有四個。它們的表面均為正多邊形或正星形且每個頂點都有相同數目的邊連接。.
上面的列表回答下列问题
- 什么多面体和正十二面體的共同点。
- 什么是多面体和正十二面體之间的相似性
多面体和正十二面體之间的比较
多面体有34个关系,而正十二面體有46个。由于它们的共同之处4,杰卡德指数为5.00% = 4 / (34 + 46)。
参考
本文介绍多面体和正十二面體之间的关系。要访问该信息提取每篇文章,请访问: