我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

多面体和正十二面體

快捷方式: 差异相似杰卡德相似系数参考

多面体和正十二面體之间的区别

多面体 vs. 正十二面體

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。. 正十二面體是由12個正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号所表示,与正二十面体互成对偶。它是一种只具有的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體。.

之间多面体和正十二面體相似

多面体和正十二面體有(在联盟百科)4共同点: 卡塔蘭立體立方體正多面體星形正多面體

卡塔蘭立體

卡塔蘭立體是半正多面體的對偶多面體,都是凸多面體。1865年比利時數學家歐仁·查理·卡塔蘭最先描述它們。 卡塔蘭立體面可遞而點不可遞,而其對偶多面體半正多面體點可遞而面不可遞。只有兩個邊可遞的卡塔蘭立體:菱形十二面體和菱形三十面體。 所有多面體中只有有13種是卡塔蘭立體,其對偶多面體均為阿基米德立體(半正多面體)。.

卡塔蘭立體和多面体 · 卡塔蘭立體和正十二面體 · 查看更多 »

立方體

立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.

多面体和立方體 · 正十二面體和立方體 · 查看更多 »

正多面體

正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.

多面体和正多面體 · 正十二面體和正多面體 · 查看更多 »

星形正多面體

星型正多面體(Kepler-Poinsot多面體)是一類凹多面體,共有四個。它們的表面均為正多邊形或正星形且每個頂點都有相同數目的邊連接。.

多面体和星形正多面體 · 星形正多面體和正十二面體 · 查看更多 »

上面的列表回答下列问题

多面体和正十二面體之间的比较

多面体有34个关系,而正十二面體有46个。由于它们的共同之处4,杰卡德指数为5.00% = 4 / (34 + 46)。

参考

本文介绍多面体和正十二面體之间的关系。要访问该信息提取每篇文章,请访问: