我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

复平面和无穷远点

快捷方式: 差异相似杰卡德相似系数参考

复平面和无穷远点之间的区别

复平面 vs. 无穷远点

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。. 无穷远点,又称为理想点,是一个加在实数轴上后得到实射影直线\mathbbP^1的点。实射影直线与扩展的实数轴不是一样的,扩展的实数轴有两个不同的无穷远点。 无穷远点也可以加在复平面\mathbb^1上,于是把它变成一个闭曲面,称为黎曼球面\mathbbP^1。(把球面穿一个孔,并把所得到的边拉开来,便得到一个平面;相反的过程便把复平面变为\mathbbP^1:在平面外加上一个点,并把平面向这个点包起来,便得到球面。) 这个结构可以推广到任何拓扑空间。所得到的空间称为原空间的单点紧化。因此,圆形是直线的单点紧化,而球面则是平面的单点紧化。 现在考虑实射影平面\mathbbP^2上的一对平行直线。由于这对直线是平行的,因此它们相交于无穷远点,这个点位于\mathbbP^2的无穷远直线上。更进一步,这两条直线都\mathbbP^2上的射影直线:每一条都有自己的无穷远点。当一对射影直线平行时,它们相交于它们公共的无穷远点。.

之间复平面和无穷远点相似

复平面和无穷远点有(在联盟百科)2共同点: 球面黎曼球面

球面

球面 (sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆 ”包围着“圆盘”那样)。 就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间中离给定的点距离相同的点的集合 。 这个距离 是球的半径 ,球(ball)则是由离给定点距离小于 的所有点构成的几何体,而这个给定点就是球心。球的半径和球心也是球面的半径和中心。两端都在球面上的最长线段通过球心,其长度是其半径的两倍;它是球面和球体的直径 。 尽管在数学之外,术语“球面”和“球”有时可互换使用,但在数学中是明确区分的:球面是一种嵌在三维欧几里得空间内的二维封闭曲面,而球是一种三维图形,其包括球面和球面内部的一切(闭球),不过更常见的定义是只包括球面内部的所有点,不包括球面上的点(开球)。这种区别并不总是保持不变,尤其是在旧的数学文献里,sphere(球面)被当作固体。这与在平面上混用术语“圆”(circle)和“圆盘”(disk)的情况类似。.

复平面和球面 · 无穷远点和球面 · 查看更多 »

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

复平面和黎曼球面 · 无穷远点和黎曼球面 · 查看更多 »

上面的列表回答下列问题

复平面和无穷远点之间的比较

复平面有52个关系,而无穷远点有7个。由于它们的共同之处2,杰卡德指数为3.39% = 2 / (52 + 7)。

参考

本文介绍复平面和无穷远点之间的关系。要访问该信息提取每篇文章,请访问: