我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

基本相互作用和宇宙

快捷方式: 差异相似杰卡德相似系数参考

基本相互作用和宇宙之间的区别

基本相互作用 vs. 宇宙

基本相互作用(fundamental interaction),為物质间最基本的相互作用,常稱為自然界四力或宇宙基本力。迄今为止观察到的所有关于物质的物理现象,在物理學中都可借助这四种基本相互作用的机--得到描述和解释。 大统一理论認為:強相互作用、弱相互作用和电磁相互作用可以統一成一種相互作用,目前统一弱相互作用和電磁相互作用的电弱统一理论已經獲得實驗證實。. 宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

之间基本相互作用和宇宙相似

基本相互作用和宇宙有(在联盟百科)13共同点: 大爆炸宇宙学万有理论廣義相對論弱相互作用引力几何学牛顿万有引力定律行星黑洞量子力学艾萨克·牛顿时空

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

基本相互作用和大爆炸 · 大爆炸和宇宙 · 查看更多 »

宇宙学

宇宙學(英文:Cosmology)或宇宙論,這個詞源自於希臘文的κοσμολογία(cosmologia, κόσμος (cosmos) order + λογια (logia) discourse)。宇宙學是對宇宙整體的研究,並且延伸探討至人類在宇宙中的地位。雖然宇宙學這個詞是最近才有的,人們對宇宙的研究已經有很長的一段歷史,牽涉到科學、哲學、神秘学以及宗教。.

基本相互作用和宇宙学 · 宇宙和宇宙学 · 查看更多 »

万有理论

萬有理論(Theory of Everything或ToE)指的是假定存在的一種具有總括性、一致性的物理理論框架,能夠解釋宇宙的所有物理奧秘。經過幾個世紀奮勉不懈的努力,發展出兩種理論框架:廣義相對論與量子場論。它們的總合,可以說是最接近想像中的萬有理論。廣義相對論專注於研究引力來明白宇宙的大尺度與高質量現象,例如恆星、星系、星系團等等。量子場論專注於研究非引力來明白宇宙的小尺度與低質量現象,例如,亞原子粒子、原子、分子等等。量子場論成功地給出標準模型,並且能夠按照大統一理論將弱力、強力與電磁力這三種非引力統合在一起。 經過多年的研究,這兩種理論分別在適用範圍內做出的預測幾乎都已被實驗肯定。根据物理学家的研究结果,廣義相對論與量子場論互不相容,即對於某些狀況,两者不可能同时是正確的。由於這兩種理論的適用範圍不同,對於大多數狀況,只需用到其中一種理論。這兩種理論的不相容之處在非常小尺度與高質量範圍才成为显著的问题,例如,在黑洞內部、在宇宙大爆炸之后的极短时间。為了解釋這衝突,透露更深層實在、將引力與其它三種作用力統合在一起的理論框架必需被找出,和諧地将廣義相對論與量子場論整合在一起,原則而言,成為能夠描述所有物理現象的單一理論。近期,在追逐這艱難目標的過程中,量子引力已成為積極研究領域。 万有理论用来指那些试图统合自然界四种基本相互作用:引力相互作用、强相互作用、弱相互作用和电磁相互作用成為一体的理论,是在电磁作用和弱相互作用連成一体的电弱作用理论之後,再加入強相互作用連成一体的大統一理論基础之後,又加上引力作用連成一体的理論。目前被认为最有可能成功的萬有理论是弦理论和圈量子引力論。.

万有理论和基本相互作用 · 万有理论和宇宙 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

基本相互作用和廣義相對論 · 宇宙和廣義相對論 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

基本相互作用和弱相互作用 · 宇宙和弱相互作用 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

基本相互作用和引力 · 宇宙和引力 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

几何学和基本相互作用 · 几何学和宇宙 · 查看更多 »

牛顿万有引力定律

万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.

基本相互作用和牛顿万有引力定律 · 宇宙和牛顿万有引力定律 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

基本相互作用和行星 · 宇宙和行星 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

基本相互作用和黑洞 · 宇宙和黑洞 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

基本相互作用和量子力学 · 宇宙和量子力学 · 查看更多 »

艾萨克·牛顿

艾萨克·牛顿爵士,(Sir Isaac Newton,,英語發音)是一位英格兰物理学家、数学家、天文学家、自然哲学家和煉金術士。1687年他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定了此后三个世纪--力学和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供了强而有力的理论支持,并推动了科学革命。 在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。 在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。 在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会院士和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。.

基本相互作用和艾萨克·牛顿 · 宇宙和艾萨克·牛顿 · 查看更多 »

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

基本相互作用和时空 · 宇宙和时空 · 查看更多 »

上面的列表回答下列问题

基本相互作用和宇宙之间的比较

基本相互作用有53个关系,而宇宙有149个。由于它们的共同之处13,杰卡德指数为6.44% = 13 / (53 + 149)。

参考

本文介绍基本相互作用和宇宙之间的关系。要访问该信息提取每篇文章,请访问: