徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

基因組學和遗传学

快捷方式: 差异相似杰卡德相似系数参考

基因組學和遗传学之间的区别

基因組學 vs. 遗传学

基因组学(Genomics),或基因體學,是研究生物基因组和如何利用基因的一门学科。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。 基因组学能为一些疾病提供新的诊断、治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。 基因组学的主要工具和方法包括:生物信息学,遗传分析,基因表达测量和基因功能鉴定。. 遗传学是研究生物体的遗传和变异的科学,是生物学的一个重要分支Hartl D, Jones E (2005)。史前时期,人们就已经利用生物体的遗传特性通过选择育种来提高谷物和牲畜的产量。而现代遗传学,其目的是寻求了解遗传的整个过程的机制,则是开始于19世纪中期孟德尔的研究工作。虽然孟德尔并不知道遗传的物理基础,但他观察到了生物体的遗传特性,某些遗传单位遵守简单的统计学规律,这些遗传单位现在被称为基因。 基因位于DNA上,而DNA是由四类不同的核苷酸组成的链状分子,DNA上的核苷酸序列就是生物体的遗传信息。天然DNA以双链形式存在,两条链上的核苷酸互补,而每一条链都能够作为模板来合成新的互补链。这就是生成可以被遗传的基因的复制方式。 基因上的核苷酸序列可以被细胞翻译以合成蛋白质,蛋白质上的氨基酸序列就对应着基因上的核苷酸序列。这种对应性被称为遗传密码。蛋白质的氨基酸序列决定了它如何折叠成为一个三维结构,而蛋白质结构则与它所发挥的功能密不可分。蛋白质执行细胞中几乎所有的生物学进程来维持细胞的生存。DNA上的一个基因的改变可以改变其编码的蛋白质的氨基酸,并可能改变此蛋白质的结构和功能,进而对细胞甚至整个生物体造成巨大的影响。 虽然遗传学在决定生物体外形和行为的过程中扮演着重要的角色,但此过程是遗传学和生物体所经历的环境共同作用的结果。 例如,虽然基因能够在一定程度上决定一个人的体重,人在孩童时期的所经历的营养和健康状况也对他的体重有重大影响。.

之间基因組學和遗传学相似

基因組學和遗传学有(在联盟百科)23共同点: 基因基因組合成生物学人类基因组计划弗雷德里克·桑格弗朗西斯·克里克秀麗隱桿線蟲细菌细胞羅莎琳·富蘭克林真核生物生物生物信息学詹姆斯·杜威·沃森转录脱氧核糖核酸重組DNA自然选择蛋白质蛋白质结构核糖核酸核苷酸氨基酸

基因

基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

基因和基因組學 · 基因和遗传学 · 查看更多 »

基因組

在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.

基因組和基因組學 · 基因組和遗传学 · 查看更多 »

合成生物学

合成生物學(synthetic biology)是將生物科學應用到日常生活中的一種嶄新方式。英國倫敦的皇家科學院(Royal Society)認為:合成生物學結合了其他領域的知識與工具,涉及的領域包括系統生物學、基因工程、機械工程、機電工程、資訊理論、物理學、納米技術及電腦模擬等等。 目前,合成生物學已在多個行業落實應用,例如農業、能源、製造業及醫學等等。.

合成生物学和基因組學 · 合成生物学和遗传学 · 查看更多 »

人类基因组计划

人类基因组计划(Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索巨型工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的六十亿对组成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步。截止到2005年,人类基因组计划的测序工作已经基本完成(92%)。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因組公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程。大多数政府资助的测序是在美国,英国,日本,法国,德国和中国的20所大学和研究中心进行。.

人类基因组计划和基因組學 · 人类基因组计划和遗传学 · 查看更多 »

弗雷德里克·桑格

弗雷德里克·桑格,OM,CH,CBE,FRS(Frederick Sanger,),英國生物化學家,曾經在1958年及1980年兩度獲得諾貝爾化學獎,是第四位兩度獲得諾貝爾獎,以及唯一獲得兩次化學獎的人。.

基因組學和弗雷德里克·桑格 · 弗雷德里克·桑格和遗传学 · 查看更多 »

弗朗西斯·克里克

弗朗西斯·哈利·康普頓·克立克,OM,FRS(Francis Harry Compton Crick,),英国生物学家、物理学家及神经科学家。他最重要的成就是1953年在剑桥大学卡文迪许实验室与詹姆斯·沃森共同发现了脱氧核糖核酸(DNA)的双螺旋结构,二人也因此与莫里斯·威尔金斯共同获得了1962年诺贝尔生理及医学奖,獲獎原因是「發現核酸的分子結構及其對生物中信息傳遞的重要性」 。克里克在2004年因大腸癌病逝於美國加州。他的同事克里斯多福·科赫,曾感叹道:“他临死前还在修改一篇论文;他至死仍是一名科学家”。.

基因組學和弗朗西斯·克里克 · 弗朗西斯·克里克和遗传学 · 查看更多 »

秀麗隱桿線蟲

麗隱桿線蟲(学名:Caenorhabditis elegans)是一種非寄生性線蟲,身体透明,長度約1毫米,主要分布在温带地区的土壤中。其寿命约两至三周,其中发育时间在三天左右,分为胚胎期、幼虫期和成虫期。 秀丽隐杆线虫有雄性和雌雄同体两种性别。自然条件下,雌雄同体虫占大多数,可自体受精,也可接受雄虫的精子产生后代。 自20世纪60年代,悉尼·布伦纳利用線蟲研究細胞凋亡遺傳調控的機制之後,秀丽隐杆线虫逐渐成為分子生物學和發育生物學研究領域中最常用的模式生物之一。秀丽隐杆线虫具有固定且已知的細胞数量和发育过程,亦為第一种完成全基因组测序的多細胞真核生物,截至2012年,它是唯一完成(connectome,神经元连接)测定的生物体。.

基因組學和秀麗隱桿線蟲 · 秀麗隱桿線蟲和遗传学 · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

基因組學和细菌 · 细菌和遗传学 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

基因組學和细胞 · 细胞和遗传学 · 查看更多 »

羅莎琳·富蘭克林

羅莎琳·愛爾西·富蘭克林(Rosalind Elsie Franklin,),是一位英國物理化學家與晶體學家。她所做的研究,專注於DNA、病毒、煤炭與石墨等物質的結構。其中她所拍攝的DNA晶體繞射圖片「照片51號」,以及關於此物質的相關數據,是詹姆斯·華生與佛朗西斯·克里克解出DNA結構的關鍵線索。此後她也領導了關於菸草鑲嵌病毒與小兒麻痺病毒的研究。 1958年,富蘭克林因支氣管肺炎及卵巢癌逝世。2003年,倫敦國王學院將一棟新大樓命名為「富蘭克林—威爾金斯館」以紀念她與同事莫里斯·威尔金斯的貢獻。.

基因組學和羅莎琳·富蘭克林 · 羅莎琳·富蘭克林和遗传学 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

基因組學和真核生物 · 真核生物和遗传学 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

基因組學和生物 · 生物和遗传学 · 查看更多 »

生物信息学

生物信息學(bioinformatics)利用应用数学、信息学、统计学和计算机科学的方法研究生物学的问题。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。目前主要的研究方向有:序列比对、序列組裝、基因识别、基因重组、蛋白质结构预测、基因表达、蛋白质反应的预测,以及建立进化模型。 生物学技术往往生成大量的嘈杂数据。与数据挖掘类似,生物信息学利用数学工具从大量数据中提取有用的生物学信息。生物信息学所要处理的典型问题包括:重新組裝在霰弹枪定序法测序过程中被打散的DNA序列,从蛋白质的氨基酸序列预测蛋白质结构,利用mRNA微阵列或质谱仪的数据检验基因调控的假说。 某些人将计算生物学作为生物信息学的同义词处理;但是另外一些人认为计算生物学和生物信息学应当被当作不同的条目处理,因为生物信息学更侧重於生物学领域中计算方法的使用和发展,而计算生物学强调应用信息学技术对生物学领域中的假说进行检验,并尝试发展新的理论。 生物信息学可以定义为对分子生物学中两类信息流的研究:.

基因組學和生物信息学 · 生物信息学和遗传学 · 查看更多 »

詹姆斯·杜威·沃森

詹姆斯·杜威·沃森(James Dewey Watson,),美國分子生物學家,20世紀分子生物學的牽頭人之一。與同僚佛朗西斯·克里克因為共同發現DNA的雙螺旋結構,而與莫里斯·威爾金斯獲得1962年諾貝爾生理學或醫學獎。.

基因組學和詹姆斯·杜威·沃森 · 詹姆斯·杜威·沃森和遗传学 · 查看更多 »

转录

转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.

基因組學和转录 · 转录和遗传学 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

基因組學和脱氧核糖核酸 · 脱氧核糖核酸和遗传学 · 查看更多 »

重組DNA

重組DNA是一种人工合成的脱氧核糖核酸。它是把一般不同时出现的DNA序列组合到一起而产生的。从遺傳工程的观点来看重組DNA是把相关的DNA添加到已有生物的基因組中,比如细菌的质粒中,其目的是为了改变或者添加特别是的特性,比如免疫。重組DNA与遺傳重組不是一回事。它不是重组细胞内或者染色体上已经存在的基因组,而完全是通过外部工程达到的。重组蛋白质是从重組DNA合成出来的蛋白质。 重組DNA技术是1973年由斯坦利·诺曼·科恩和赫伯特·玻意尔设计的。1974年他们发表了他们的设计。在这篇论文中他们描述了分离和放大基因或者DNA片段,然后精确地把它们插入其它细胞中,由此制造出转基因细菌。沃納·亞伯、丹尼爾·那森斯和漢彌爾頓·史密斯发明了限制酶才使得重組DNA技术可行,为此他们获得了1978年诺贝尔医学奖。.

基因組學和重組DNA · 遗传学和重組DNA · 查看更多 »

自然选择

自然选择(natural selection,傳統上也譯為天擇)指生物的遺傳特徵在生存競爭中,由於具有某種優勢或某種劣勢,因而在生存能力上產生差異,並進而導致繁殖能力的差異,使得這些特徵被保存或是淘汰。自然選擇則是演化的主要機制,經過自然選擇而能夠稱成功生存,稱為「適應」。自然選擇是唯一可以解釋生物適應環境的機制。 這個理論最早是由达尔文在1859年出版的《物種起源》中提出,其於早年在加拉巴哥群島觀察了數種動物後發現,島上很少有與鄰近大陸相似的物種,並且還演化出許多獨有物種,如巨型的加拉巴哥象龜,達爾文於開始以為,島上的鷽鳥應與南美洲發現的為同種,經研究,十三種燕雀中只有一種是與其大陸近親類似的,其餘皆或多或少發生了演化現象,他們爲了適應島上的生存環境,改變了鳥喙的大小。.

基因組學和自然选择 · 自然选择和遗传学 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

基因組學和蛋白质 · 蛋白质和遗传学 · 查看更多 »

蛋白质结构

蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。 一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。.

基因組學和蛋白质结构 · 蛋白质结构和遗传学 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

基因組學和核糖核酸 · 核糖核酸和遗传学 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

基因組學和核苷酸 · 核苷酸和遗传学 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

基因組學和氨基酸 · 氨基酸和遗传学 · 查看更多 »

上面的列表回答下列问题

基因組學和遗传学之间的比较

基因組學有65个关系,而遗传学有154个。由于它们的共同之处23,杰卡德指数为10.50% = 23 / (65 + 154)。

参考

本文介绍基因組學和遗传学之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »