徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

基因組內部衝突

指数 基因組內部衝突

根據自私基因理論,若一基因的表現型能確保其較為成功的複製及傳遞,該基因的頻率即會上升。一般情況下,能提升個體存活率及繁殖成功率(適存度)的基因,較易達成此一目標;然而,在某些情況下,如果利於各基因(或染色體片段)傳遞的條件有所不同,甚至互相抵觸,或是利於部分基因傳遞的條件會對整個基因組或是個體造成危害(自私DNA),此時所引起的現象稱為基因組內部衝突。.

41 关系: 基因座基因水平轉移卵细胞古菌受精卵家谱小家鼠微孢子蟲哺乳动物减数分裂內切酶玉米着絲粒等位基因等足目細胞器線粒體细菌片腳類花藥节肢动物適應度遺傳重組表型被子植物鱗翅目质粒黑腹果蝇轉位子膜翅目自私的基因配子生成配子體Wolbachia染色体染色體倍性染色體易位接合作用沃尔巴克氏体性別決定系統

基因座

在生物學與演化運算(evolutionary computation)中,基因座(locus),也称为“基因位点”或“位点”,是指染色體上的固定位置,例如某個基因的所在。而基因座上的DNA序列可能有許多不同的變化,各種變化形式稱為等位基因(allele)。基因座在基因組中的排列位置稱為基因图谱(genetic map),基因作圖(Gene mapping)則是測定基因座與特定性狀關係的過程。 二倍體與多倍體細胞的某些染色體上,在同一基因座上有相同的等位基因,這類細胞稱為纯合子/同型合子(homozygous)。若是相同基因座上含有不同的等位基因,則稱作杂合子/異型合子(heterozygous)。.

新!!: 基因組內部衝突和基因座 · 查看更多 »

基因水平轉移

基因水平轉移(horizontal gene transfer,縮寫:HGT)又稱水平基因轉移或基因側向轉移(lateral gene transfer,縮寫:LGT),指生物將遺傳物質傳遞給其他細胞而非其子代的過程,例如:接合、转导及转化。與此相對,“基因垂直传递”指生物由其祖先繼承遺傳物質。遺傳學一般關心更爲普遍的垂直傳遞,但目前的知識表明,基因水平轉移是一個重要的現象。由於此現象的存在,使生物早期的演化關係更為複雜。 水平基因轉移是細菌抗生素抗藥性的主要原因,並且在細菌可降解新型化合物例如人類創建的殺蟲劑進化中起著重要作用,並在進化,維護和傳輸毒性的重要原因 。這種基因水平轉移經常涉及溫和的噬菌體和質粒。 大多數的思維在遺傳學一直專注於垂直傳遞,但是人們日益認識到基因水平轉移是一種非常顯著的現象,以及是在單細胞生物之間或許是基因轉移主要形式。 人工的基因水平轉移屬於基因工程的一種。.

新!!: 基因組內部衝突和基因水平轉移 · 查看更多 »

卵细胞

卵子是雌性动物的生殖细胞。卵细胞(由次级卵母细胞产生)成熟后成为卵子。 在哺乳动物上,卵子是由卵巢所產生的。所有哺乳類在出生時,卵巢內已經有未成熟的卵子存在,而且在出生後卵子數目不會增加。卵子和精子結合受精便形成受精卵,即一個新生命的開始。一些動物(例如鳥類)是進行體內受精(in vivo fertilisation)的,而另一些動物(例如大部份的魚類和兩棲類動物)則是進行體外受精。.

新!!: 基因組內部衝突和卵细胞 · 查看更多 »

古菌

古菌(Archaea,来自,意为“古代的东西”)又稱古細菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物属于原核生物,它們與细菌有很多相似之處,即它们没有细胞核与任何其他膜结合细胞器,同時另一些特徵相似於真核生物,比如存在重复序列与核小体。 过去曾经将古菌和细菌一同归为原核生物,并将其命名为“古细菌”,但这种分类方式已过时。事实上古菌有其独特的进化历程,并与其它生命形式有显著的生化差异,所以现在将其列为三域系统中的一个域。在这个系统中,古菌、细菌与真核生物各为一个域,并进一步划分为界与门。到目前为止,古菌已被划分为公认的四个门,随着进一步研究,还可能建立更多的门类。在这些类群中,研究最深入的是泉古菌门与广古菌门。但对古菌进行分类仍然是困难的,因为绝大多数的古菌都无法在实验室中纯化培养,只能通过环境宏基因组检测来分析。 古菌和细菌的大小和形状非常相似,但少数古菌有不寻常的形状,如嗜鹽古菌拥有平面正方形的细胞。尽管看起来与细菌更相似,但古菌与真核生物的亲缘关系更为密切,特别是在一些代谢途径(如转录和转译)有关酶的相似性上。古菌还有一些性状是独一无二的,比如由依赖醚键构成的细胞膜。与真核生物相比,古菌有更多的能量来源,从熟悉的有机物糖类到氨到金属离子直到氢气。(如)可以以太阳光为能源,其它一些种类的古菌能进行;但不像蓝藻与植物,没有一种古菌能同时做到这两者而进行光合作用。古菌通过分裂、出芽、断裂来进行无性生殖,但没有发现能产生孢子的种类。 一开始,古菌被认为都是一些生活在温泉、盐湖之类极端环境的嗜极生物,但近来发现它们的栖息地其实十分广泛,从土壤、海洋、到河流湿地。它们也被发现在人类的大肠、口腔、与皮肤。尤其是在海洋中古菌特别多,一些浮游生物中的古菌可能是这个星球上数量最大的生物群体。现在,古菌被认为是地球生命的一个重要组成部分,在碳循环和氮循环中可能扮演重要的角色。目前没有已知的作为病原体或寄生虫的古菌,他们往往是偏利共生或互利共生。一个例子是,生活在人和反刍动物的肠道中帮助消化,还被用于沼气生产和污水处理。嗜极生物古菌中的酶能承受高温和有机溶剂,在被生物技术所利用。.

新!!: 基因組內部衝突和古菌 · 查看更多 »

受精卵

受精卵(zygote、合子)在发育生物学中用来描述生物的第一阶段,此时它只是一个单细胞。这个词也会被较为宽松地运用于经过最初几分裂后的细胞,虽然严格地讲这一阶段应称为卵裂球(分裂球,裂球)。一枚受精卵通常是通过两个单倍体细胞——女性的卵子和男性的精子通过受精结合在一起,所形成的二倍体细胞。因此,受精卵包含了来自父亲和母亲的DNA,提供了一个新的个体的全部遗传信息。 在哺乳动物的繁殖过程中,受精后所形成的受精卵会移动到输卵管,分裂成更多的细胞,但其大小却不改变。 受精卵的分裂是有丝分裂,通常被称为“细胞分裂”。 所有的哺乳动物在一生中都会经过受精卵这一阶段。受精卵会发育成胚胎,然后变成胎儿。 人类受精卵会存在约大约4天,并在第5天成为囊胚,然后进一步发育为原肠胚。.

新!!: 基因組內部衝突和受精卵 · 查看更多 »

家谱

家谱,或稱祖譜、族譜、譜牒、宗譜、家乘、世譜、世牒、支譜、房譜等,是家族裡记载本族世系和相關重要事蹟的书。在家谱上所登記的姓名謂之譜名。.

新!!: 基因組內部衝突和家谱 · 查看更多 »

小家鼠

小家鼠(學名Mus musculus)也稱為家鼠、鼷鼠或小鼠。.

新!!: 基因組內部衝突和小家鼠 · 查看更多 »

微孢子蟲

微孢子蟲(學名:Microsporidia)為一門。它是由孢子形成的單細胞寄生蟲。目前多於一百萬種微孢子蟲中的1500種版命名。微孢子蟲只能寄生於動物宿主。大部份的動物物種都可以被微孢子蟲寄生,包括人類。它多數感染昆蟲,也是甲殼和魚的常見疾病。一般的来说,已经命名的微孢子蟲會專門感染指定的物種。而部分物種可能會感染人類,它們多是伺機感染原,在人體免疫力下降時才造成感染。 約有10%的物種是脊椎動物的病原。.

新!!: 基因組內部衝突和微孢子蟲 · 查看更多 »

哺乳动物

哺乳动物是指脊椎动物亚门下哺乳綱(学名:Mammalia)的一类用肺呼吸空气的温血脊椎动物,因能通过乳腺分泌乳汁来给幼体哺乳而得名。 按照《世界哺乳动物物种》(Mammal Species of the World)一书在2005年的资料,哺乳纲目前有约5676个(2008版的IUCN红皮书为5488个)不同物种,分布在1229个属,153个科和29个目中,约占脊索动物门的10%,地球所有物种的0.4%。啮齿目(老鼠、豪猪、海狸、水豚等)、翼手目(蝙蝠等)和鼩形目(鼩鼱等)是哺乳动物中物种最多的目。 哺乳动物的身体结构复杂,有区别于其他类群的大脑结构、恒温系统和循环系统,具有为后代哺乳、大多数属于胎生、具有毛囊和汗腺等共通的外在特征。 它们外型多样,小至体长30毫米长有翅膀的凹脸蝠,大至体长33米形同鱼类的蓝鲸。它们有很好的环境适应能力,分布在从海洋到高山,从热带到极地的广泛区域。人类也是哺乳动物的一员。.

新!!: 基因組內部衝突和哺乳动物 · 查看更多 »

减数分裂

減數分裂(meiosis)是一種特殊的細胞分裂方式,會使得染色體的數目減半,製造出單倍體細胞,每條染色體源自於其親代細胞 。這個過程會發生在所有以有性生殖進行繁殖的單細胞或多細胞真核生物體內,包括動物、植物、以及真菌Bernstein H, Bernstein C, Michod RE (2011).

新!!: 基因組內部衝突和减数分裂 · 查看更多 »

內切酶

核酸内切酶(-)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等分解DNA的酶;RNase、RNaseT1等分解RNA的酶。一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。其中的限制內切酶又稱限制酶,可切割特定的DNA位置。.

新!!: 基因組內部衝突和內切酶 · 查看更多 »

玉米

玉米(学名:Zea mays)是一年生禾本科草本植物,是全世界总产量最高的重要粮食作物。同時也可以當作飼料使用,還有在生物科技產業作為乙醇燃料的原材料。而且玉米更在各個化工領域被大量利用著,做成塑膠等等不同的物品。.

新!!: 基因組內部衝突和玉米 · 查看更多 »

着絲粒

染色体着丝粒(centromere),又稱中節,主要作用是使复制的染色体在有丝分裂和减数分裂中可均等地分配到子细胞中。在很多高等真核生物中,着丝粒看起来像是在染色体一个点上的浓缩区域,这个区域包含着丝点(希腊语kínesis 運動;chóros 部位),又称主缢痕(primary constriction)。 着丝粒(染色体的主缢痕)为染色质的结构,将染色体分成二臂,在细胞分裂前期和中期,把两个姐妹染色单体连在一起,到后期两个染色单体的着丝粒分开。着丝粒两侧各有一个由蛋白质构成的3层盘状特化结构,为非染色体性质物质的附加物,称为着丝点。 在大部分真核生物中每个纺锤丝附着在不同的着丝粒上。如啤酒酵母(Saccharomyces cerevisiae)附着在每个着丝粒上仅一条纺锤丝。广义上說着丝粒也常指着丝点,然而狭义上的着丝点是將染色体和纺锤丝微管相結合的蛋白质复合体。 若着丝粒丢失了,那么染色体就失去了附着到纺锤丝上的能力,细胞分裂时染色体就会随机地进入子细胞。然而有着丝粒的染色体也会出现这种异常分配,那就是复制后的两个染色体拷贝并不总是正确地分离进入子细胞。在此过程中发生错误的概率通常是很低的。如在酵母中分配发生错误的概率低于十万分之一。若发生错误会引起染色体数目的改变。.

新!!: 基因組內部衝突和着絲粒 · 查看更多 »

等位基因

等位基因(英语:allele),是染色体内的基因座的可以复制的DNA序列,其在细胞有丝分裂时的染色体上的两个基因座是对应排列的,故在早期细胞遗传学里称其为等位。 在一個生物體裡,某個基因的基因型是由該基因所擁有的一对等位基因所決定。例如在人和其他二倍體生物,也就是每條染色體都有兩套的生物,其等位基因的两个位点決定了該基因的基因型。等位基因两个位点来自父辈和母辈的遗传,其基因型决定了生物的表现型。 生物的表现型由一对等位基因的一个位点决定的,称显性基因;而由两个位点决定的,则称为隐性基因。例如等位基因一个位点的突变,可产生癌基因,而两个位点的突变或丢失,则可导致肿瘤抑制基因,或抑癌基因的突变。这些基因的改变是肿瘤发生的分子基础。.

新!!: 基因組內部衝突和等位基因 · 查看更多 »

等足目

等足目(學名:Isopoda),又名等足類或等腳類,是一目甲殼類,其下包括了潮蟲及球潮蟲。等足目的化石紀錄可以追溯至3億年前的石炭紀。.

新!!: 基因組內部衝突和等足目 · 查看更多 »

細胞器

细胞器(organelle,或稱--)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。 细胞器可依各自拥有膜的层数大致分为三类(广义的細胞器还包括囊泡及核小体等):.

新!!: 基因組內部衝突和細胞器 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 基因組內部衝突和線粒體 · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

新!!: 基因組內部衝突和细菌 · 查看更多 »

片腳類

#重定向 端足類.

新!!: 基因組內部衝突和片腳類 · 查看更多 »

花藥

花藥(anther)是花中雄蕊的一部分,附著於花絲頂端。花藥內部含有小孢子母細胞,並可行減數分裂產生花粉(內含雄配子)。典型的花藥有兩葉,並於中部或基部與花絲相連。.

新!!: 基因組內部衝突和花藥 · 查看更多 »

节肢动物

节肢動物是動物的一类,由昆虫纲、甲壳纲、蛛形纲等外骨骼動物組成被稱为节肢动物门(学名:Arthropoda)的分類單位。在動物界中所屬物種最多的一門,已被人類命名的昆蟲類就有超過75萬種 。除昆蟲外,常見的蝦、蟹、蜘蛛、蜈蚣及已滅絕的三葉蟲都屬於节肢動物。 节肢動物的特點為其分節的肢體,以及主要成份為α-甲殼素的角質層。甲壳生物的角質層中也包括了碳酸鈣,是的產物。.

新!!: 基因組內部衝突和节肢动物 · 查看更多 »

-- 蟎(mite, 音--)是一種8足生物,是蜘蛛的近親。螨的體形極小,必須借助顯微鏡觀察。 蟎又可分為塵蟎(dust mite)與農業蟎,其中農業蟎又有葉蟎(spider mite)、擬葉蟎(false spider mite)、銹蟎(rust mite)及粉蟎(acarid mite)等。塵蟎靠人類的皮屑為食物即可生存,例如:毛囊螨。另外,亦有一種乾酪蟎,以乾酪為食。.

新!!: 基因組內部衝突和螨 · 查看更多 »

適應度

適應度(英語:Fitness),又可稱適存度或生殖成就,是生物學,特別是群體遺傳學、數理生物學中用來描述擁有某一特定基因型的個體,在繁殖上的成功率或能力。假如帶有不同基因型的個體擁有不同的適應度,那麼這些基因型的比例將會在世代交替之後有所變動。而造成這種比例變動的機制是自然選擇(天擇)。.

新!!: 基因組內部衝突和適應度 · 查看更多 »

遺傳重組

遺傳學上的重組是指DNA片段斷裂並且轉移位置的現象,也稱為遺傳重組或是基因重組。发生在减数分裂时非姐妹染色单体上的基因结合。 對原核生物(例如細菌)來說,個體之間可以透過交接,或是經由病毒(例如噬菌體)的傳送,來交換彼此的基因,並且利用基因重組將這些基因組合到本身原有的遺傳物質中。 對於較複雜的生物來說,重組通常是因為同源染色體配對時發生互換,使得同源染色體上的基因在遺傳到子代時,經常有不完全的連鎖。由於重組現象的存在,科學家可以利用重組率來定出基因之間的相對位置,描繪出基因圖譜。.

新!!: 基因組內部衝突和遺傳重組 · 查看更多 »

表型

表型(Phenotype),又称表現型,对于一個生物而言,表示它某一特定的物理外觀或成分。一個人是否有耳珠、植物的高度、人的血型、蛾的顏色等等,都是表型的例子。 表型主要受生物的基因型和環境影響,表型可分為連續變異或不連續變異的。前者較易受環境因素影響,基因型上則會受多個等位基因影響,如體重、智力和身高;後者僅受幾個等位基因影響,而且很少會被環境改變,如血型、眼睛顏色和捲舌的能力。對於不連續變異,若有兩個生物表現型相同,其基因型未必一樣,這是因為其中一方可能有隱性基因。 表型變異是進化論物競天擇理論成立的重要條件。早期的遺傳學家欠缺分子生物學技術,無從直接觀察DNA構造,生物和其後代的表型就是他們判別其基因型的工具。.

新!!: 基因組內部衝突和表型 · 查看更多 »

被子植物

被子植物又名開花植物或有花植物,生物學分類稱被--子植--物門,是有胚植物中為數最多且最為人所知的一種,是植物界最多樣化的種類,约有304000種。同時開花植物是現時地球上演化最先進及優勢的植物種類。開花植物和裸子植物一起合稱為種子植物。開花植物可以由一系列的衍徵將其與其他的種子植物相區隔開來。.

新!!: 基因組內部衝突和被子植物 · 查看更多 »

鱗翅目

L * Category:卡尔·林奈命名的生物分类 鱗翅目(學名:Lepidoptera),又名蝶蛾目、螟蛉目,是昆蟲綱中第二大的目,包括各種蝴蝶和蛾類(并系群)。鱗翅目昆蟲是完全變態生物(卵、幼蟲、蛹、成蟲)。成蟲有兩對翅膀,上面覆滿鱗粉,口器則呈吸管狀。中國古統稱鱗翅目昆蟲為螟蛉。鱗翅目有46個總科、126個科及超過18萬个已被描述的物种,是昆虫纲中僅次於鞘翅目的第二大目,占到了全部已描述物种中的10%以上 。鳞翅目是世界上最广泛分布和最广为人知的昆虫目之一。鳞翅目昆虫的身体结构展现出了许多变化,有利于它们的生存和传播。最新的研究表明,鳞翅目的实际物种数量可能比先前预计的要更多,与膜翅目,双翅目和鞘翅目并为物种数量最丰富的目。 鳞翅目主要有三大衍征,最明显的是覆盖在身上和翅上的鳞片以及长长的喙。它们鳞片实际上是一种变态的、扁平的「毛发」,这些鳞片赋予了鳞翅目昆虫在颜色和图案方面显著的多样性。绝大部分物种具有膜状的翅,少数物种有不同程度的退化,甚至完全消失。鳞翅目是完全变态的,成虫进行交配和产卵的过程一般在幼虫的寄主植物附近或寄主上进行。鳞翅目的幼虫俗称毛毛虫,在外观上与成虫完全不同,具有圆柱形身体,完全发育的头部和口器,三对前足以及从无到最多五对伪足。随着它们的成长,这些幼虫会在外观上发生变化,并经历一系列称为「龄期」的阶段。一旦完全成熟,幼虫就会化蛹。一部分物种会吐丝结茧,而另一些则不会。蝶蛹具有坚硬的外壳,通常没有茧。一旦蛹完成了变态,性成熟的成虫就会羽化形成。 鳞翅目拥有数百万年的历史,演变出各种各样的翅膀图案和颜色。 因此,鳞翅目是昆虫中最受到人们关注的一个类群,许多人参与了这些昆虫的观察,研究,收集,饲养和买卖。 鳞翅目在生物圈中作为传粉者和食物链中的一环发挥着重要作用。但是,它们的幼虫在农业中是危害作物的一大害虫,因为幼虫的主要食物来源往往是活的植物。许多鳞翅目的雌性可一产下 200 至 600 个蛋,更有甚者,这个数字可能会接近 30000 个。 从这些蛋孵化的毛毛虫可能会对大量农作物造成损害。 许多蛾类和蝴蝶物种因其作为传粉媒介、丝绸的生产者或作为害虫而在人类的经济活动中扮演重要的角色。.

新!!: 基因組內部衝突和鱗翅目 · 查看更多 »

质粒

質體(英語:Plasmid)是附加到細胞中的非细胞的染色体或核区DNA原有的能够自主复制的較小DNA分子(即細胞附殖粒、又胞附殖粒;辭源:plasm為生殖質,-id表示粒)。大部分的質粒雖然都是環狀構形,然而目前也發現有少數的質粒屬於線性構形,它存在于许多细菌以及酵母菌等生物中,乃至於植物的粒線體等胞器中。天然質粒的DNA長度從數千鹼基對至數十萬鹼基對都有。質粒天然存在於這些生物裡面,有時候一個細胞裡面可以同時有一種乃至於數種的質粒同時存在。質粒的在細胞裡從單一到數千都有可能。有時有些质粒含有某种抗药基因(如大肠杆菌中就有含有抗四环素基因的质粒)。有一些質粒攜帶的基因則可以賦予細胞額外的生理代謝能力,乃至於在一些細菌中提高它的致病力。一般来说,质粒的存在与否对宿主细胞在良好環境下的生存没有决定性的作用。它是基因工程最常见的运载体。.

新!!: 基因組內部衝突和质粒 · 查看更多 »

黑腹果蝇

黑腹果蝇也称黑尾果蝇(学名:Drosophila melanogaster),是被人类研究得最彻底的生物之一,为模式生物。从(Charles W. Woodworth)关于利用该物种作为模式生物的建议开始,黑腹果蝇继续被广泛用于遗传学,生理学,微生物发病机理和的生物学研究。 截至2017年,已有8个诺贝尔奖颁发给使用果蝇的研究。 黑腹果蝇通常被用于研究,因为它可以很容易地在实验室饲养,只有四对染色体,迅速繁殖,并且产很多卵。 其地理范围包括各大洲,包括岛屿。黑腹果蝇是家庭,餐馆和其他有食物的地方常见的害虫。.

新!!: 基因組內部衝突和黑腹果蝇 · 查看更多 »

轉位子

#重定向 转座子.

新!!: 基因組內部衝突和轉位子 · 查看更多 »

膜翅目

膜翅目(学名:Hymenoptera)是昆虫纲中的一個目,它的名字来自于其膜一般的,透明的翅膀,它包括各种蜂和蚂蚁。在全世界它有約100科,11萬5000多個种,是昆虫綱中第三大的目(次於鞘翅目和鱗翅目)。.

新!!: 基因組內部衝突和膜翅目 · 查看更多 »

自私的基因

《自私的基因》是英国演化生物学家理查德·道金斯于1976年出版的书,主要关于演化論,其理论构筑于乔治·威廉斯(George C. Williams)的书《适应与自然选择》(Adaptation and Natural Selection)之上。道金斯使用“自私的基因”来表达基因中心的进化论观点。这种观点和基于物种或生物体的进化论观点不同,能够解释生物体之间的各种利他行为。两个生物体在基因上的关系越紧密,就越有可能表现得无私。 一个物种的进化是为了提升其整体适应度——将自己的基因尽可能多地传给整个群体(而不是个别的个体)。于是,整个种群会朝向进化稳定策略(evolutionarily stable strategy)进化。本书还创造了迷因(meme)一词,用以表示人类社会文化的进化的基本单位,提出“自私”的复制机制同样适用于人类文化。自本书出版以来,迷因学说成为了很多研究的主题。 在本书30周年纪念版的前言中,道金斯说他已经看到本书的书名给读者留下了不恰当的印象,并在回忆往事时认为他应该听取汤姆·马斯开尔(Tom Maschler)的意见改名叫“永恒的基因”(The Immortal Gene)。.

新!!: 基因組內部衝突和自私的基因 · 查看更多 »

配子生成

配子生成是一個生物體內的機制,可以形成雙倍體或單倍體的前期細胞使之進行細胞分裂以及分化,形成成熟的單倍體配子。根據不同生物的生活史,配子發生會藉由雙倍體細胞進行減數分裂形成多個配子,或者從單倍體細胞進行有絲分裂。舉例來說,植物透過配子體進行有絲分裂而形成配子。配子體來自於胞子減數分裂形成的單倍體胞子。在多細胞生物的減數分裂以及配子生成之間,單倍體的存在也被稱為世代的交替。 Category:發育生物學 Category:生殖系统 Category:生殖细胞.

新!!: 基因組內部衝突和配子生成 · 查看更多 »

配子體

配子體(英文:gametophyte)為行世代交替的植物及藻類中,處於單倍體的多細胞階段。配子體會進行有絲分裂產生配子(可能是雄配子、雌配子或兩者皆產生,依種類不同)。配子結合後產生合子 (zygote),合子會行有絲分裂長成雙倍體多細胞的孢子體個體。孢子體成熟後,會經由減數分裂產生單倍體的孢子,孢子再度行有絲分裂生長形成配子體個體,完成世代交替的循環。 在苔蘚植物(地錢門、角苔門及苔蘚植物門)中,配子體為較明顯可辨認的階段,由孢子萌發後,經由原絲體的階段生長而來(角苔的配子體發育過程中未經過原絲體的階段);苔蘚的孢子體必須依附於配子體上以獲取養分。苔蘚植物配子體上生產配子的器官稱為配子囊 (gametangium)。 在蕨類植物中,配子體為行自由生活的個體,稱之為原葉體 (prothallus)。原葉體上具有藏精器及藏卵器,分別產生精細胞及卵細胞。大部分的蕨類的配子體是由單一一種孢子(同形孢子)發育而來的,因此可同時產生精細胞及卵細胞,但部分水生蕨類具有兩種不同大小的孢子(異形孢子):大孢子萌發發育為產生卵細胞的雌配子體,小孢子發育為產生精細胞的雄配子體。 在裸子植物及被子植物中,配子體為微小、依附於孢子體上生存的寄生性個體。雌配子體又稱大配子體 (megagametophyte)在被子植物中即為胚囊;雄配子體又稱小配子體 (microgametophyte),即為花粉管。 某些多細胞的綠藻、紅藻或褐藻(例如石蓴)中,配子體與孢子體的形態相同,但有些物種的配子體則是退化的。.

新!!: 基因組內部衝突和配子體 · 查看更多 »

Wolbachia

#重定向 沃尔巴克氏体.

新!!: 基因組內部衝突和Wolbachia · 查看更多 »

染色体

-- 染色體(chromosome)是真核生物特有的構造,主要由雙股螺旋的脱氧核糖核酸和5种被称为组蛋白的蛋白质构成,是基因的主要載體。染色体是细胞内具有遗传性质的遗传物质深度压缩形成的聚合体,易被碱性染料染成深色,所以叫染色体(由染色质组成)。染色质和染色体是同一物质在细胞分裂间期和分裂期的不同形态表现。染色体出现于分裂期。染色质出现于间期,呈丝状。其本质都是脱氧核糖核酸(DNA)和蛋白质的组合(即核蛋白组成的),不均匀地分布于细胞核中 ,是遗传信息(基因)的主要载体,但不是唯一载体(如细胞质内的線粒体)。.

新!!: 基因組內部衝突和染色体 · 查看更多 »

染色體倍性

染色體倍性是指細胞內同源染色體的數目,只有一組最基本的稱為「單套」或「單倍體」(haploid),兩組備份稱為「雙套」或「二倍體」(diploid)。多倍體的細胞則有更多套的染色體。 其中有些常見生物就是多倍體(polyploid),譬如金魚、鮭魚、螞蟥、扁形蟲、有尾目和蕨類植物。多套的動物通常都是低等動物,或能行孤雌生殖的居多。這種多倍體,又分異源多倍體(Allopolyploidy)和同源多倍體(Polyploid或Autopolyploidy,或「單源多倍體」),特別是前者的染色體來自不同種。 在雙套生物中,有一個過程,將雙倍體的細胞分裂成單倍體,使配子結合後的合子為雙倍體,稱為減數分裂。有些生物以倍性來作決定性別:雌性為雙倍體,雄性為單倍體。 在人類,只有精子和卵子是單倍體,其他細胞都是雙倍體。如果一個人類胚胎部分染色體為多倍體,多數不能正常發育,但如果是性染色體是多倍體(XXX或XYY)、三套第21對染色體(唐氏綜合症)、三套第18對染色體(愛德華氏症)、三套第13對染色體(帕陀氏症),則有機會長大成人。 细胞是根据存在的集合数目(倍性水平)被描述:单倍体(1组),二倍体(2组),三倍体(3组),四倍体(4组),五倍体(5组),六倍体 (6组),七倍体(heptaploid或septaploid,7组)等。通用术语多倍体通常用于描述具有三组或更多组染色体(三倍体或更高倍数)的细胞。.

新!!: 基因組內部衝突和染色體倍性 · 查看更多 »

染色體易位

染色體易位(Chromosome translocation,或譯染色體對調)是一種染色體異常現象,指非同源染色體的片段重新排列組合。主要可分為兩種類型:.

新!!: 基因組內部衝突和染色體易位 · 查看更多 »

接合作用

#重定向 接合.

新!!: 基因組內部衝突和接合作用 · 查看更多 »

沃尔巴克氏体

沃尔巴克氏体(Wolbachia)的立克次体科的一个属的细菌,感染节肢动物,包括很大部分昆虫,以及一些线虫。它是世界上最常见的寄生微生物,可能是生物圈最常见的寄生生物。沃尔巴克氏体感染能缩短果蝇寿命。它与其宿主的交互过程很复杂,参与多种调控其寄主生殖活动的机制,有的涉及到互利共生而非寄生。有的物种如果没有沃尔巴克氏体的寄生将不能生殖甚至不能生存。研究估计在新热带界超过16%的昆虫感染了沃尔巴克氏体。全部昆虫物种的25-70%被估计是沃尔巴克氏体的潜在宿主。沃尔巴克氏菌是自然界分布最为广泛的一种共生菌,在鞘翅目、双翅目、半翅目、同翅目、膜翅目、鳞翅目、直翅目和啮虫目等10多个目的150万一500万种昆虫中都有共生。 沃尔巴克氏体通过宿主的卵来垂直传播。沃尔巴克氏体演化出多种方式能最大限度地感染宿主所产的卵。.

新!!: 基因組內部衝突和沃尔巴克氏体 · 查看更多 »

性別決定系統

性別決定系統(Sex-determination system)是一個生物系統,決定了生物性特徵的發展。大部分生物都有兩個性別(像木瓜有雄株雌株和雌雄同株三種性別),一些比較原始的生物可以有多於兩種不同的「性別」。舉例說:四膜蟲的「」(Mating type)就有七種類型。在許多情況下,性别由遗传物质决定:雄性和雌性有不同的等位基因甚至不同的基因,說明他們的性形態。在動物及雌雄異株的植物中,這往往伴隨著染色體的差異。在其他情況下,性別是由環境因素(如溫度)或社會因素。決定系統的一些細節目前還沒有完全理解。.

新!!: 基因組內部衝突和性別決定系統 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »