我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

埃瓦里斯特·伽罗瓦和李群

快捷方式: 差异相似杰卡德相似系数参考

埃瓦里斯特·伽罗瓦和李群之间的区别

埃瓦里斯特·伽罗瓦 vs. 李群

埃瓦里斯特·伽罗瓦(Évariste Galois,,法語發音:),法国著名的数学家。在他还只有十几岁的时候,他就发现了n次多项式可以用根式解的充要条件,解决了长期困扰数学界的问题。他的工作为伽罗瓦理论(一个抽象代数的主要分支)以及伽罗瓦连接领域的研究奠定了基石。他是第一个使用「群」这一個数学术语来表示一组置换的人。與尼尔斯·阿贝尔並稱為現代群論的創始人。在路易·菲利普复辟的时期,他是一个激进的共和主义者,并因此被逮捕、坐牢。二十岁出狱后,他在一次幾近自殺的決鬥中逝世,引起種種揣測。. 數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

之间埃瓦里斯特·伽罗瓦和李群相似

埃瓦里斯特·伽罗瓦和李群有1共同点(的联盟百科):

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

埃瓦里斯特·伽罗瓦和群 · 李群和群 · 查看更多 »

上面的列表回答下列问题

埃瓦里斯特·伽罗瓦和李群之间的比较

埃瓦里斯特·伽罗瓦有32个关系,而李群有23个。由于它们的共同之处1,杰卡德指数为1.82% = 1 / (32 + 23)。

参考

本文介绍埃瓦里斯特·伽罗瓦和李群之间的关系。要访问该信息提取每篇文章,请访问: