我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

埃拉托斯特尼筛法和数学

快捷方式: 差异相似杰卡德相似系数参考

埃拉托斯特尼筛法和数学之间的区别

埃拉托斯特尼筛法 vs. 数学

埃拉托斯特尼筛法(κόσκινον Ἐρατοσθένους,sieve of Eratosthenes ),簡稱--,也有人称素数筛。这是一種簡單且历史悠久的筛法,用來找出一定範圍內所有的質數。 所使用的原理是從2開始,將每個質數的各個倍數,標記成合數。一個質數的各個倍數,是一個差為此質數本身的等差數列。此為這個篩法和試除法不同的關鍵之處,後者是以質數來測試每個待測數能否被整除。 埃拉托斯特尼篩法是列出所有小質數最有效的方法之一,其名字來自於古希臘數學家埃拉托斯特尼,並且被描述在另一位古希臘數學家尼科馬庫斯所著的《算術入門》中。. 数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

之间埃拉托斯特尼筛法和数学相似

埃拉托斯特尼筛法和数学有1共同点(的联盟百科): 素数

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

埃拉托斯特尼筛法和素数 · 数学和素数 · 查看更多 »

上面的列表回答下列问题

埃拉托斯特尼筛法和数学之间的比较

埃拉托斯特尼筛法有17个关系,而数学有219个。由于它们的共同之处1,杰卡德指数为0.42% = 1 / (17 + 219)。

参考

本文介绍埃拉托斯特尼筛法和数学之间的关系。要访问该信息提取每篇文章,请访问: