我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

垂直和垂足曲线

快捷方式: 差异相似杰卡德相似系数参考

垂直和垂足曲线之间的区别

垂直 vs. 垂足曲线

垂直是一个几何术语。在平面几何中,如果一条直线与另一条直线相交,且它们构成的任意相邻两个角相等,那么这两条直线相互垂直。术语“垂直”(垂直符號:⊥)衍生一个形容词(垂直)或者名词(垂线)。因此,根据圖一,直线AB通过B点与直线CD相互垂直。像图一这样,如果一条直线与另一条直线垂直,那么它们构成的两个角称为直角,或者90°角。 垂足指两条互相垂直的线相交的点。 垂直的概念对线段和射线也通用,只需看一者所在的直线是否与另一者所在的直线垂直就可以了。如图一中,线段AB和线段CD相互垂直。甚至线段AB的一端不一定要在线段CD上(即可定向伸缩),它们仍被认为是垂直的。 空间几何中,有直线与直线、直线与平面、平面与平面之间的垂直关系。垂直可以看做是欧几里得空间(或内积空间)中的正交关系在二维和三维空间中的特例。. 在曲线微分几何中,踩踏板曲綫是從給定曲綫所創造的曲綫,構造方法像自行車用腳踩踏在原有曲綫上,故稱為踩踏板曲綫,又譯作垂足曲线。给定一个曲线和一个定点P(称为垂足点或踩踏點(Pedal Point))。在曲线的任何一条切线T上,都存在唯一的一个点X,要么是P本身,要么与P形成的直线与T垂直。垂足曲线是符合这种性质的所有点X所组成的集合。 垂足曲线不一定是连通的,例如对于多边形来说,它仅仅是一些孤立的点。 如果P是垂足点,c是曲线的一个参数方程,则垂足曲线的参数方程为: 如果垂足点是原点,则垂足曲线为:.

之间垂直和垂足曲线相似

垂直和垂足曲线有(在联盟百科)2共同点: 直线

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

圆和垂直 · 圆和垂足曲线 · 查看更多 »

直线

線,是一個點在平面或空間沿著一定方向和其相反方向運動的軌跡;不彎曲的線。直線是幾何學的基本概念,在不同的幾何學體系中有著不同的描述。在這裡主要描述歐幾里得空間中的直線。其他曲率非零狀況下的直線,請參考非歐幾里得幾何。 歐幾里得幾何研究曲率為零的空間下狀況,它並未對點、直線、平面、空間給出定義,而是通過公理來描述點線面的關係。 歐幾里得幾何中的直線可以看作是一個點的集合,這個集合中的任意一點都在這個集合中的其他任意兩點所確定的直綫上。 “過兩點有且只有一條直線”是歐幾里得幾何體系中的一條公理,“有且只有”意即“確定”,即兩點確定一直線。 在幾何學中,直線沒有粗細、沒有端點、沒有方向性、具有無限的長度、具有確定的位置。.

垂直和直线 · 垂足曲线和直线 · 查看更多 »

上面的列表回答下列问题

垂直和垂足曲线之间的比较

垂直有21个关系,而垂足曲线有14个。由于它们的共同之处2,杰卡德指数为5.71% = 2 / (21 + 14)。

参考

本文介绍垂直和垂足曲线之间的关系。要访问该信息提取每篇文章,请访问: