我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

坡印廷向量和馬克士威方程組

快捷方式: 差异相似杰卡德相似系数参考

坡印廷向量和馬克士威方程組之间的区别

坡印廷向量 vs. 馬克士威方程組

坡印廷向量(Poynting vector),亦称能流密度矢量,其方向為電磁能傳遞方向,大小為能流密度(单位面积的能量传输速率)。坡印廷矢量的SI单位是瓦特每平方米(W/m2)。它是以其发現者约翰·亨利·坡印廷來命名的。奧利弗·黑維塞 和尼科莱·乌诺夫亦獨立發現所謂的坡印廷向量。. 克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

之间坡印廷向量和馬克士威方程組相似

坡印廷向量和馬克士威方程組有(在联盟百科)16共同点: 向量恆等式列表各向同性光子国际单位制真空磁导率真空电容率頻率边值问题量子電動力學自由空間電場電勢正弦曲線洛伦兹力旋度散度

向量恆等式列表

這條目陳列一些常用的向量代數的恆等式。.

向量恆等式列表和坡印廷向量 · 向量恆等式列表和馬克士威方程組 · 查看更多 »

各向同性

各向同性(isotropy),是指物体的物理、化学性质不因方向而有所变化的特性,即在不同方向所测得的性能数值是相同的。如所有的气体、液体以及非晶体都显示各向同性,多晶体(如一块金属)表现的各向同性称为“准各向同性”。各向同性的物体称为均质体。 各向同性与各向异性相反。确切的定义,取决于其使用的领域。各向同性的辐射在各向上有等同的强度,并且一个各向同性的场对测试粒子有同样的作用,无论其初始方向。以波动的传播为例,波源于此种介质中,发出的振动,于各个方向,速度一致。也即,波的传播速度与方向无关。于此种介质中,波面与波线正交。.

各向同性和坡印廷向量 · 各向同性和馬克士威方程組 · 查看更多 »

光子

| mean_lifetime.

光子和坡印廷向量 · 光子和馬克士威方程組 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

国际单位制和坡印廷向量 · 国际单位制和馬克士威方程組 · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

坡印廷向量和真空磁导率 · 真空磁导率和馬克士威方程組 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

坡印廷向量和真空电容率 · 真空电容率和馬克士威方程組 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

坡印廷向量和頻率 · 頻率和馬克士威方程組 · 查看更多 »

边值问题

在微分方程中,边值问题是一个微分方程和一组称之为边界条件的约束条件。边值问题的解通常是符合约束条件的微分方程的解。 物理学中经常遇到边值问题,例如波动方程等。許多重要的边值问题屬於Sturm-Liouville問題。這類問題的分析會和微分算子的本徵函數有關。 在实际应用中,边值问题应当是适定的(即:存在解,解唯一且解會隨著初始值連續的變化)。許多偏微分方程領域的理論提出是為要證明科學及工程應用的許多边值问题都是适定問題。 最早研究的边值问题是狄利克雷问题,是要找出调和函数,也就是拉普拉斯方程的解,後來是用狄利克雷原理找到相關的解。.

坡印廷向量和边值问题 · 边值问题和馬克士威方程組 · 查看更多 »

量子電動力學

在粒子物理學中,量子電動力學(Quantum Electrodynamics,簡稱QED)是電動力學的相對論性量子場論。它在本質上描述了光與物質間的相互作用,而且它還是第一套同時完全符合量子力學及狹義相對論的理論。量子電動力學在數學上描述了所有由帶電荷粒子經交換光子產生的相互作用所引起的現象,同時亦代表了古典電動力學所對應的量子理論,為物質與光的相互作用提供了完整的科學論述。 用術語來說,量子電動力學就是電磁量子的微擾理論。它的其中一個創始人,理查德·費曼把它譽為「物理學的瑰寶」("the jewel of physics"),原因是它能為相關的物理量提供,例如電子的異常磁矩及氫原子能階的蘭姆位移。.

坡印廷向量和量子電動力學 · 量子電動力學和馬克士威方程組 · 查看更多 »

自由空間

在經典物理裏,自由空間(free space)是電磁理論的一種概念,指的是一種理論的完美真空,不含有任何物質的真空。有時候,自由空間又稱為自由空間真空,或經典真空。自由空間可以恰當地被視為一種參考介質 許多國際單位制的單位,像安培或公尺,其定義都是建立於以自由空間為參考介質的測量值。由於實驗室所使用的參考介質並不是自由空間,實驗室得到的測量值必須經過修正,才能成為以自由空間為參考介質的測量值。.

坡印廷向量和自由空間 · 自由空間和馬克士威方程組 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

坡印廷向量和電場 · 電場和馬克士威方程組 · 查看更多 »

電勢

在静電學裡,電勢(electric potential)定義為處於電場中某个位置的單位電荷所具有的電勢能。電勢又稱為電位,是純量。其數值不具有絕對意義,只具有相對意義,因此為了便於分析問題,必須設定一個參考位置,並把它設為零,稱為零勢能點。通常,會把無窮遠處的電勢設定為零。那麼,電勢可以定義如下:假設檢驗電荷從無窮遠位置,經過任意路徑,克服電場力,緩慢地移動到某位置,則在這位置的電勢,等於因遷移所做的機械功與檢驗電荷量的比值。在國際單位制裏,電勢的度量單位是伏特(Volt),是為了紀念意大利物理學家亞歷山德羅·伏打(Alessandro Volta)而命名。 電勢必需滿足帕松方程式,同時符合相關邊界條件;假設在某區域內的電荷密度為零,則帕松方程式約化為拉普拉斯方程式,電勢必需滿足拉普拉斯方程式。 在電動力學裏,當含時電磁場存在的時候,電勢可以延伸為「廣義電勢」。特別注意,廣義電勢不能被視為電勢能每單位電荷。.

坡印廷向量和電勢 · 電勢和馬克士威方程組 · 查看更多 »

正弦曲線

正弦曲線或正弦波(Sinusoid/Sine wave)是一種來自數學三角函數中的正弦比例的曲線。也是模拟信号的代表,與代表數位信號的方波相對。.

坡印廷向量和正弦曲線 · 正弦曲線和馬克士威方程組 · 查看更多 »

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

坡印廷向量和洛伦兹力 · 洛伦兹力和馬克士威方程組 · 查看更多 »

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

坡印廷向量和旋度 · 旋度和馬克士威方程組 · 查看更多 »

散度

散度或稱發散度,是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。举例来说,考虑空间中的静电场,其空间里的电场强度是一个矢量场。正电荷附近,电场线“向外”发射,所以正电荷处的散度为正值,电荷越大,散度越大。负电荷附近,电场线“向内”,所以负电荷处的散度为负值,电荷越大,散度越小。向量函數的散度為一個純量,而纯量的散度是向量函数。.

坡印廷向量和散度 · 散度和馬克士威方程組 · 查看更多 »

上面的列表回答下列问题

坡印廷向量和馬克士威方程組之间的比较

坡印廷向量有58个关系,而馬克士威方程組有135个。由于它们的共同之处16,杰卡德指数为8.29% = 16 / (58 + 135)。

参考

本文介绍坡印廷向量和馬克士威方程組之间的关系。要访问该信息提取每篇文章,请访问: