徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

地熱能和能量

快捷方式: 差异相似杰卡德相似系数参考

地熱能和能量之间的区别

地熱能 vs. 能量

地熱能(geothermal energy)是由地殼抽取的天然熱能,這種能量來自地球內部的熔岩,並以熱力形式存在,是引致火山爆發及地震的能量。地球內部的溫度高達攝氏7000度,而在80至100公里的深度處,溫度會降至攝氏650度至1200度。透過地下水的流動和熔岩湧至離地面1至5公里的地殼,熱力得以被轉送至較接近地面的地方。高溫的熔岩將附近的地下水加熱,這些加熱了的水最終會滲出地面。運用地熱能最簡單和最合乎成本效益的方法,就是直接取用這些熱源,並抽取其能量。 人類很早以前就開始利用地熱能,例如在旧石器时代就有利用溫泉沐浴、醫療,在古罗马时代利用地下熱水取暖等、近代有建造農作物溫室、水產養殖及烘乾穀物等。但真正認識地熱資源並進行較大規模的開發利用卻是始於20世紀中葉,但是,现代则更多利用地熱来發電。 地熱能的利用可分為地熱發電和直接利用兩大類。地熱能是來自地球深處的可再生能源。地球地殼的地熱能源起源於地球行星的形成(20%)和礦物質放射性衰變(80%)。 地熱能儲量比目前人們所利用的總量多很多倍,而且因为历史原因多集中分佈在構造板塊邊緣一帶、該區域也是火山和地震多發區。如果熱量提取的速度不超過補充的速度,那麼地熱能便是可再生的。地熱能在世界很多地區應用相當廣泛。據估計,每年從地球內部傳到地面的熱能相當於100PW·h。不過,地熱能的分佈相對來說比較分散,開發難度大。. 在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

之间地熱能和能量相似

地熱能和能量有(在联盟百科)9共同点: 太阳能地球地质学地震化學火山电能核動力机械能

太阳能

太阳能(英语:Solar energy),是指來自太陽辐射出的光和热被不斷發展的一系列技術所利用的一种能量,如,,太陽能光伏發電,太陽熱能發電,和。 自地球形成生物就主要以太陽提供的熱和光生存,而自古人類也懂得以陽光曬乾物件,並作為保存食物的方法,如製鹽和曬鹹魚等。但在化石燃料減少下,才有意把太陽能進一步發展。 太阳能技術分為有源(主動式)及無源(被動式)兩種。有源的例子有太陽能光伏及光热转换,使用電力或機械設備作太陽能收集,而這些設備是依靠外部能源運作的,因此稱為有源。無源的例子有在建築物引入太陽光作照明等,當中是利用建築物的設計、選擇所使用物料等達至利用太陽能的目的,由於當中的運作無需由外部提供能源,因此稱為無源。 太阳能发电是一种新兴的可再生能源。广义上的太阳能是地球上许多能量的来源,如風能,化学能,水的势能。化石燃料可以稱為遠古的太陽能。太阳能资源丰富,且无需运输,对环境污染低。太阳能为人类创造了一种新的生活形态,使社会以及人类进入一个节约能源减少污染的时代。.

地熱能和太阳能 · 太阳能和能量 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

地熱能和地球 · 地球和能量 · 查看更多 »

地质学

地质学(法语、德语:Geologie;Geology;拉丁语、西班牙语:Geologia;源于希腊语 γῆ 和 λoγία)是对地球的起源 探討壓力與時間、历史和结构进行研究的学科。主要研究地球的物质组成、内部构造、外部特征、各圈层间的相互作用和演变历史。在现阶段,由于观察、研究条件的限制,主要以岩石圈为研究对象,并涉及水圈、大气圈、生物圈和岩石圈下更深的部位,以及涉及其他行星和衛星的太空地质学(Astrogeology)。.

地熱能和地质学 · 地质学和能量 · 查看更多 »

地震

地震(Earthquake)震動,可由自然現象如地殼突然運動、火山活動及隕石撞擊引起,亦可由人為活動如地下核試驗造成。歷史曾記載的災害性地震主要由地殼突然運動所造成,地殼在板塊運動的過程中累積應力,當地殼無法繼續累積應力時破裂釋放出地震波,使地面發生震動,震動可能引發山泥傾瀉甚或火山活動。如果地震在海底發生,海床的移動甚至會引發海嘯。 地震可由地震儀透過對地震波的觀察來量測,地震規模表示地震所釋放出來的能量大小,地震烈度指地震在該地點造成的震動程度,地震的發生處稱為震源,其投影至地表的位置為震中。.

地熱能和地震 · 地震和能量 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

化學和地熱能 · 化學和能量 · 查看更多 »

火山

火山是地表下在岩浆库中的高温岩浆及其有关的气体、碎屑从行星的地壳中喷出而形成的,具有特殊形態的地质结构。 地球上的火山发生是因为地壳被分裂成17个主要的和刚性的地壳板块,它们漂浮在地幔的一个更热和更软的层。火山可以分为死火山和活火山。在一段时间内,没有出現喷发事件的活火山叫做睡火山(休眠火山)。另外还有一种泥火山,它在科学上严格来说不属于火山,但是许多社会大众也把它看作是火山的一种类型。 火山爆发可能会造成许多危害,不仅在火山爆发附近。其中一个危险是火山灰可能对飞机构成威胁,特别是那些喷气发动机,其中灰尘颗粒可以在高温下熔化; 熔化的颗粒随后粘附到涡轮机叶片并改变它们的形状,从而中断涡轮发动机的操作。火山爆发是一种很严重的自然灾害,它常常伴有地震。大型爆发可能会影响温度,因为火山灰和硫酸液滴遮挡太阳并冷却地球的低层大气(或对流层); 然而,它们也吸收地球辐射的热量,从而使高层大气(或平流层)变暖。 历史上,火山冬天造成了灾难性的饥荒。 虽然火山喷发会对人类造成危害,但同时它也带来一些好处。例如:可以促进宝石的形成;扩大陆地的面积(夏威夷群岛就是由火山喷发而形成的);作为观光旅游考察景点,推动旅游业,如日本的富士山。 专门研究火山活动的学科称为火山学。.

地熱能和火山 · 火山和能量 · 查看更多 »

电能

电能(Electrical energy),是指电以各种形式做功(即產生能量)的能力。电能被广泛应用在动力、照明、冶金、化学、纺织、通信、广播等各个领域,是科学技术发展、国民经济飞跃的主要动力。.

地熱能和电能 · 电能和能量 · 查看更多 »

核動力

核动力(nuclear power,也稱原子能或核能)是利用可控核反应来获取能量,然后产生动力、热量和电能。该术语包括核裂变,核衰变和核聚变。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。 利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美國)。 根據國際能源署的資料,2007年全球電力有13.8%由核能提供。截至2014年9月,全世界共有437个核电机组处于运行状态,总装机容量为374.5吉瓦,虽然不是所有的核反应堆都正在发电。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供提供动力。 核动力相關的重大事故包括三哩岛核泄漏事故(1979年)、切尔诺贝利核事故(1986年)、福岛第一核电站事故(2011年)和一些核动力潜艇事故。在各種能源的事故之中,按照每个单位发电的人命损失计算,核电的安全记录優于其他几种主要的发电方式。 If you cannot access the paper via the above link, the following link is open to the public, credit to the authors.

地熱能和核動力 · 核動力和能量 · 查看更多 »

机械能

机械能()又作--,是指宏观物质所表现出的势能(位能)Ep与动能Ek的总和,即.

地熱能和机械能 · 机械能和能量 · 查看更多 »

上面的列表回答下列问题

地熱能和能量之间的比较

地熱能有79个关系,而能量有86个。由于它们的共同之处9,杰卡德指数为5.45% = 9 / (79 + 86)。

参考

本文介绍地熱能和能量之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »